This paper deals with the chiral separation of Fmoc- and Z-derivatives of natural and unnatural sulfur containing amino acids by micro-HPLC. The separations were carried out in microbore columns packed with a new material based on Ristocetin A bonded to 3.5 microm silica gel. The columns were run in the normal phase, polar organic mode as well as in the reversed phase mode, whereby best results were obtained with the reversed-phase mode using mixtures of triethylamine acetate (TEAA) buffer and methanol as mobile phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbbm.2004.02.004 | DOI Listing |
ACS Nano
January 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.
View Article and Find Full Text PDFJ Org Chem
January 2025
Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
Chiral organic molecules with a complementing π-structure are highly desired to obtain materials with good semiconducting properties and pronounced chirality effects in the visible region. Herein, we introduce a novel design strategy to achieve an axially chiral and rigid perylene bisimide (PBI) dye by attaching the chirality-inducing 2,2'-biphenoxy moiety at one side of the bay area and the rigidity-inducing di--butylsilanediol bridge on the other side. This yielded a new bay-functionalized PBI derivative carrying the combination of a highly rigid and, simultaneously, an axially chiral perylene core.
View Article and Find Full Text PDFChirality
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids.
View Article and Find Full Text PDFChirality
January 2025
Department of Chemistry, Shyam Lal College, University of Delhi, New Delhi, India.
Enantiomeric analysis of chiral drugs is very significant, as their enantiomers display different pharmacological or toxicological behavior towards living systems. Among these drugs, β-blockers are available as racemates, where their enantiomers display different pharmacological effects. Herein, we report enantioselective separation of two β-blockers, namely, atenolol and sotalol, using a derivatization approach.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
We show that spontaneous density segregation in dense systems of aligning circle swimmers is a condensation phenomenon at odds with the phase separation scenarios usually observed in two-dimensional active matter. The condensates, which take the form of vortices or rotating polar packets, can absorb a finite fraction of the particles in the system, and keep a finite or slowly growing size as their mass increases. Our results are obtained both at particle and continuous levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!