Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings.

J Environ Sci (China)

School of Life Sciences, State Key Laboratory for Bio-Control, Sun Yatsen (Zhongshan) University, Guangzhou 510275, China.

Published: January 2005

A field experiment was conducted to compare the growth and metal accumulation of Vetiveria zizanioides, Paspalum notatum, Cynodon dactylon and Imperata cylindraca var. major on the tailings, amended with 10 cm domestic refuse + complex NPK fertilizer(Treatment A), 10 cm domestic refuse(Treatment B) and complex NPK fertilizer (Treatment C) respectively, and without any amendment used as control (Treatment D). The results indicated that V. zizanioides was a typical heavy metal excluder, because the concentrations in shoots of the plants were the lowest among the four plants tested. The most of metal accumulated in V. zizanioides distributed in its root, and transportation of metal in this plant from root to shoot was restricted. Therefore, V. zizanioides was more suitable for phytostabilization of toxic mined lands than P. notatum and C. dactylon, which accumulated a relatively high level of metals in their shoots and roots. It was also found that I. cylindraca var. major accumulated lower amounts of Pb, Zn and Cu than C. dactylon and P. notatum, and could also be considered for phytostalilisaton of tailings. Although the metal(Pb, Zn and Cu) concentrations in shoots and roots of V. zizanioides were the lowest, the total amounts of heavy metals accumulated in shoots of V. zizanioides were the highest among the four tested plants due to the highest dry weight yield of it. The results indicated that V. zizanioides was the best choice among the four species used for phytoremediation (for both phytostabilization and phytoextraction) of metal contaminated soils.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heavy metals
8
cylindraca var
8
var major
8
complex npk
8
indicated zizanioides
8
concentrations shoots
8
shoots roots
8
zizanioides
7
metal
5
accumulation heavy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!