[Colloidal cyst of the third ventricle].

Gac Med Mex

Curso Universitario de Radiología e Imagen, Hospital Santa Fe, CT Scanner de México (UNAM).

Published: February 2005

Download full-text PDF

Source

Publication Analysis

Top Keywords

[colloidal cyst
4
cyst third
4
third ventricle]
4
[colloidal
1
third
1
ventricle]
1

Similar Publications

Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. Recently, there has been growing interest in cyanobacteria. This focus is particularly evident in developing innovative anticancer treatments to reduce reliance on traditional chemotherapy.

View Article and Find Full Text PDF

Bioengineering chitosan-antibody/fluorescent quantum dot nanoconjugates for targeted immunotheranostics of non-hodgkin B-cell lymphomas.

Int J Biol Macromol

January 2025

Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:

B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.

View Article and Find Full Text PDF

Purpose: The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.

Materials And Methods: ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM).

View Article and Find Full Text PDF

Tumor-microenvironment-mediated second near-infrared light activation multifunctional cascade nanoenzyme for self-replenishing O/HO multimodal tumor therapy.

J Colloid Interface Sci

December 2024

School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:

Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).

View Article and Find Full Text PDF

The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!