Background: Imatinib mesylate, a BCR-ABL tyrosine kinase inhibitor, induces apoptosis in chronic myeloid leukemia cells. Resistance to imatinib is currently the most important concern of this treatment. One of the main mechanisms of this resistance is overexpression of BCR-ABL.

Methods: In the current study, the authors investigated the correlation between BCR-ABL overexpression and apoptosis in BaF/BCR-ABL and LAMA84 cell lines resistant to imatinib suddenly deprived of the inhibitor, and compared with their sensitive counterpart.

Results: Removal of imatinib from culture medium led to a decrease in Bcr-Abl protein expression by Day 5, which was sustained for > or = 3 weeks of imatinib deprivation. Apoptosis was observed after 3 days of imatinib deprivation in resistant lines accompanied by caspase activation, loss of membrane asymmetry (annexin V staining), and alteration of mitochondrial potential (dihexyloxacarbocyanine iodide [DiOC6]). Transient activation of the STAT5/Bcl-xL pathway and Akt kinase activity preceded these responses.

Conclusions: Thus, imatinib removal led to apoptosis of BCR-ABL-overexpressing leukemic cells, a phenomenon that could be exploited to sensitize imatinib-resistant cells to the cytotoxic effect of other drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncr.20758DOI Listing

Publication Analysis

Top Keywords

induces apoptosis
8
imatinib
8
cell lines
8
imatinib deprivation
8
apoptosis
5
overproduction bcr-abl
4
bcr-abl induces
4
apoptosis imatinib
4
imatinib mesylate-resistant
4
mesylate-resistant cell
4

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!