This review highlights important events during the morphological development of retinal ganglion cells (RGCs), focusing on mechanisms that control axon and dendritic arborization as a means to understand synaptic connectivity with special emphasis on the role of neurotrophins during structural and functional development of RGCs. Neurotrophins and their receptors participate in the development of visual connectivity at multiple levels. In the visual system, neurotrophins have been shown to exert various developmental influences, from guiding the morphological differentiation of neurons to controlling the functional plasticity of visual circuits. This review article examines the role of neurotrophins, and in particular of BDNF, during the morphological development of RGCs, and discusses potential interactions between activity and neurotrophins during development of neuronal connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.041883scDOI Listing

Publication Analysis

Top Keywords

retinal ganglion
8
synaptic connectivity
8
morphological development
8
role neurotrophins
8
development rgcs
8
development
5
neurotrophins
5
neurotrophic regulation
4
regulation retinal
4
ganglion cell
4

Similar Publications

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

Purpose: Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Purpose: In this study, it was planned to compare the macular ganglion cell analysis (GCA) and peripapillary retinal nerve fiber layer (pRNFL) of the patients with preperimetric glaucoma (PPG), early stage glaucoma (EG) and the control group.

Methods: This retrospective study included a total of 103 eyes: 38 from EG patients, 30 from PPG patients, and 35 from healthy individuals at Ankara Bilkent City Hospital Glaucoma Unit between January 2018 and September 2021. Eyes were categorized into control, PPG, and EG groups based on visual field (VF) classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!