The aim of the current investigation is to evaluate optimal pontic and retainer fiber positions for Polyethylene fiber-reinforced composite (FRC) restorations. In series I notch disc specimens were used to mimic loading cuspal regions of pontics. Four groups (n=15/group; codes A to D) were prepared from Artglass composite. Groups A to C were reinforced with polyethylene fibers, and group D was an unreinforced control. Fibers were positioned either around (A), beneath the notch (B), or at the disc base (C). Specimens were stored in distilled water at 37 degrees C for 24 h before testing to failure (CHS=1mm/min) in a universal testing machine. Mean torque to failure values ranked [P< 0.05; one-way analysis of variance (ANOVA)] as follows A = B > C = D. In series II five groups of three unit bridges (n =5/group; codes A to E) were prepared from Artglass dental composite without (group A) or with (groups B to E) different Connect fiber reinforcement locations/techniques. Bridges were cemented using 2 bond resin cement to a standardized substructure. After storage, as per series I, bridges were loaded mid-pontic region to failure. One-way ANOVA showed no significant (P=0.08) difference between test groups. The research hypothesis was that notched disc and 3 unit bridge test techniques would discriminate equally between fiber-reinforced specimens and an unreinforced composite control was rejected.
Download full-text PDF |
Source |
---|
Materials (Basel)
January 2025
Faculty of Mechanical Engineering, Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland.
A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Tickle College of Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Non-Ferrous Metals, AGH University of Science and Technology, 30-059 Krakow, Poland.
The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.
The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Manufacturing Engineering, Technical University from Cluj-Napoca, 400001 Cluj-Napoca, Romania.
The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!