Chlamydia trachomatis is an obligate intracellular gram-negative bacterium responsible for a wide spectrum of diseases in humans. Both genital and ocular C. trachomatis infections are associated with tissue inflammation and pathology. Dendritic cells (DC) play an important role in both innate and adaptive immune responses to microbial pathogens and are a source of inflammatory cytokines. To determine the potential contribution of DC to the inflammatory process, human DC were infected with C. trachomatis serovar E or L2. Both C. trachomatis serovars were found to infect and replicate in DC. Upon infection, DC up-regulated the expression of costimulatory (B7-1) and cell adhesion (ICAM-1) molecules. Furthermore, chlamydial infection induced the secretion of interleukin-1beta (IL-1beta), IL-6, IL-8, IL-12p70, IL-18, and tumor necrosis factor alpha (TNF-alpha). The mechanisms involved in Chlamydia-induced IL-1beta and IL-18 secretion differed from those of the other cytokines. Chlamydia-induced IL-1beta and IL-18 secretion required infection with viable bacteria and was associated with the Chlamydia-induced activation of caspase-1 in infected host cells. In contrast, TNF-alpha and IL-6 secretion did not require that the Chlamydia be viable, suggesting that there are at least two mechanisms involved in the Chlamydia-induced cytokine secretion in DC. Interestingly, an antibody to Toll-like receptor 4 inhibited Chlamydia-induced IL-1beta, IL-6, and TNF-alpha secretion. The data herein demonstrate that DC can be infected by human C. trachomatis serovars and that chlamydial components regulate the secretion of various cytokines in DC. Collectively, these data suggest that DC play a role in the inflammatory processes caused by chlamydial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC529152PMC
http://dx.doi.org/10.1128/IAI.72.12.7231-7239.2004DOI Listing

Publication Analysis

Top Keywords

chlamydia-induced il-1beta
12
secretion
8
cytokine secretion
8
dendritic cells
8
chlamydia trachomatis
8
play role
8
trachomatis serovars
8
il-1beta il-6
8
mechanisms involved
8
involved chlamydia-induced
8

Similar Publications

New concepts in Chlamydia induced inflammasome responses.

Microbes Infect

March 2019

Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. Electronic address:

Since the concept of the inflammasome was introduced by Martinon, Burns and Tschopp in 2002, there has been an exponential increase in our understanding of how inflammasomes (caspase activating molecular platforms) regulate innate inflammatory responses to infectious microorganisms. Advances in understanding inflammasome biology have been developed using a range of bacterial pathogens. Recent studies investigating inflammasome responses during Chlamydia infection have provided interesting mechanistic insights in to inflammasome activation during intracellular bacterial infection.

View Article and Find Full Text PDF

The pathogenesis of Chlamydia-induced inflammation is poorly understood. pORF5 is the only secreted protein encoded by Chlamydial plasmid. This study aims to investigate the effects of pORF5 on the production of interleukin-1β (IL-1β) and interleukin-18 (IL-18) and the underlying mechanisms of these effects.

View Article and Find Full Text PDF

Localization and characterization of two putative TMH family proteins in Chlamydia psittaci.

Microbiol Res

February 2016

Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China. Electronic address:

Chlamydia psittaci (C. psittaci), an obligate intracellular agent of psittacosis, causes an atypical pneumonia in humans. The transmembrane head proteins (TMH) of C.

View Article and Find Full Text PDF

Recent findings have implicated interleukin-1beta (IL-1beta) as an important mediator of the inflammatory response in the female genital tract during chlamydial infection. But how IL-1beta is produced and its specific role in infection and pathology are unclear. Therefore, our goal was to determine the functional consequences and cellular sources of IL-1beta expression during a chlamydial genital infection.

View Article and Find Full Text PDF

Chlamydia trachomatis is a leading cause of sexually transmitted infection worldwide and responsible for myriad of immunopathological changes associated with reproductive health. Delayed secretion of proinflammatory chemokine interleukin (IL)-8 is a hallmark of chlamydial infection and is dependent on chlamydial growth. We examined the effect of iron chelators on IL-8 production in HeLa 229 (cervix epitheloid cell, CCL2) cells infected with C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!