Purpose: Biomechanical factors have been implicated in the development of glaucomatous optic neuropathy, particularly at the level of the lamina cribrosa. The goal of this study was to characterize the biomechanics of the optic nerve head using computer modeling techniques.
Methods: Several models of the optic nerve head tissues (pre- and postlaminar neural tissue, lamina cribrosa, central retinal vessel, sclera, and pia mater) were constructed. Stresses, deformations, and strains were computed using finite element modeling for a range of normal and elevated intraocular pressures. Computed retinal surface deformations were compared with measured deformation patterns in enucleated human eyes. A sensitivity analysis was performed in which tissue properties and selected geometric features were varied.
Results: Acute IOP-induced deformation of the vitreoretinal interface was highly dependent on optic cup shape but showed a characteristic "W-shaped" profile that did not match the deformation of the anterior surface of the lamina cribrosa. The central retinal vasculature had surprisingly little effect on optic nerve head biomechanics. At an IOP of 50 mm Hg, strains (fractional elongation) in the lamina cribrosa averaged 4% to 5.5%, dependent on model geometry, with maximum strains up to 7.7%. Strains in the lamina cribrosa were more dependent on scleral stiffness, scleral thickness, and scleral canal diameter than on lamina cribrosa stiffness and optic cup shape.
Conclusions: Computed levels of strain in the lamina cribrosa are biologically significant and capable of contributing to the development of glaucomatous optic neuropathy, even without considering the probable accentuating effect of the lamina cribrosa's microarchitecture. Depending on optic cup shape, IOP-induced deformation of the vitreoretinal interface may not match lamina cribrosa deformation. This finding implies that scanning laser tomography has limited ability to estimate lamina cribrosa deformation when imaging the anterior topography of the optic nerve head. Biomechanical effects in the lamina cribrosa depend strongly on scleral properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.04-0133 | DOI Listing |
Photodiagnosis Photodyn Ther
January 2025
Istanbul Medeniyet University, Faculty of Medicine, Department of Ophthalmology, Istanbul, Turkey. Electronic address:
Objective: Imaging techniques have demonstrated changes in the choroid and retina in acute central serous chorioretinopathy (CSCR), but the effects on the optic nerve head (ONH) remain unclear. This study investigates ONH structural changes in acute CSCR using enhanced deep imaging optic coherence tomography (EDI-OCT).
Methods: A prospective cohort study included 51 acute CSCR patients and 51 healthy controls aged 18-65 years.
Clin Nucl Med
December 2024
From the Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine.
Gardner syndrome is characterized by multiple intestinal polyps and extraintestinal lesions. We describe FDG PET/CT findings of the extraintestinal lesions in a patient with Gardner syndrome. FDG PET/CT showed 2 hypermetabolic desmoid tumors in the abdominal wall, sclerotic areas with multifocal activity in the maxilla and mandible, multiple osteomas in the bilateral parietal, left frontal, sphenoid and ethmoid bones, an impacted tooth in the right maxilla, and bone islands in the T2 and T5 vertebral bodies.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan.
Purpose: To define the anatomical variance between orbital floor and medial orbital wall blowout fractures, and its change with age.
Methods: This was a retrospective, observational study analyzing data from 557 patients with isolated blowout fractures of the orbital floor or medial orbital wall. Axial and quasi-sagittal CT images were analyzed to compare radiologic data on orbital wall morphology between fracture site groups and among age groups.
J Neuroophthalmol
January 2025
Departments of Ophthalmology (DB, G-SY, GTL, RAA) and Neurology (DB, GTL, RAA), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Ophthalmology (AG, GTL, RAA), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
Background: In children, pseudopapilledema is frequently caused by peripapillary hyperreflective ovoid mass-like structures (PHOMS) or optic disc drusen (ODD). While enhanced depth imaging (EDI) OCT can identify both, lack of cooperation, especially from younger children due to the duration of testing, often necessitates the use of B-scan ultrasound (BSUS). This study investigated whether PHOMS are hyperreflective on BSUS and if BSUS can differentiate PHOMS from ODD.
View Article and Find Full Text PDFEye (Lond)
January 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.
Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!