Occupational exposure to mineral dusts, such as silica, has been associated with progressive pulmonary inflammation, lung cancer, and fibrosis. However, the mechanisms involved in this process are poorly understood. Because p53 is a key transcription factor regulating many important apoptosis-related genes, we hypothesized that p53 may play a key role in silica-induced apoptosis and that abnormal regulation of p53 by silica may contribute to development of lung cancer as well as silicosis. We used both in vitro and in vivo studies to test this hypothesis. Treatment of JB6 cells carrying a p53-luciferase reporter plasmid with silica caused dose-dependent p53 transactivation. Western blot indicates that silica not only stimulated p53 protein expression but also caused p53 phosphorylation at Ser392. TUNEL and DNA fragmentation analysis show that silica caused apoptosis in both JB6 cells and wild-type p53 (p53+/+) fibroblasts but not in p53-deficient (p53-/-) fibroblasts. Similar results were obtained by in vivo studies. Intratracheal instillation of mice with silica induced apoptosis in the lung of p53+/+ mice, whereas this induction was significantly inhibited in p53-/- mice. Confocal image analysis indicates that most apoptotic cells induced by silica were alveolar macrophages. These results demonstrate for the first time that silica induces p53 transactivation via induction of p53 protein expression and phosphorylation of p53 protein and that p53 plays a crucial role in the signal transduction pathways of silica-induced apoptosis. This finding may provide an important link in understanding the molecular mechanisms of silica-induced carcinogenesis and pathogenesis in the lung.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00123.2003 | DOI Listing |
Toxicol Res (Camb)
January 2025
Department of Obstetrics and Gynecology, Jinggangshan University Clinical School of Medicine, No. 28 Xueyuan Road, Ji'an, Jiangxi 343000, China.
Ovarian cancer (OC) is a significant cause of cancer-related mortality among women. This study explores the efficacy of L. () extract, known for its phytoestrogenic properties, in treating OC through hormonal and metabolic modulation.
View Article and Find Full Text PDFNuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, exhibits a complex role in cancer biology. Genetic mutations in the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 system, which lead to NRF2 hyperactivation, are found in 20% to 30% of lung cancer cases. This review explores the intricate interplay between NRF2 and key oncogenic pathways in lung cancer, focusing on the interaction of KEAP1/NRF2 system with Kirsten rat sarcoma virus (KRAS), tumor protein P53 (TP53), epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinases (PI3K)/AKT signaling.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
Hum Cell
January 2025
Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Biochemistry, University of Oxford, Oxford, UK.
Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!