Possible links between seasonal increases in cold-tolerance and desiccation resistance were examined in field-collected larvae of the goldenrod gall fly, Eurosta solidaginis. From 20 September to 30 October 2001, larvae exhibited a gradual increase in cold-tolerance culminating in 100% survival of freezing at -20 degrees C for 24 h. The increase in cold-tolerance was probably due to a concomitant increase in cryoprotectants as measured by hemolymph osmolality (488-695 mOsmol kg(-1)). In contrast to the gradual increase in cold-tolerance, larvae exhibited two distinct phases of reduced rates of water loss. The first phase was an abrupt sixfold decrease to 0.57 microg mm(-2) h(-1) between 3 and 16 October. The first phase of reduced rates of water loss was not correlated with changes in cold-tolerance; nor was it correlated with hemolymph osmolality and body water content, which remained constant throughout the study. The reduction in rates of water loss during the first phase were probably the result of decreased respiratory water loss as the larvae entered diapause, and possibly reduced cuticular water loss as larvae increased the amount of their cuticular hydrocarbons. Interestingly, the first phase of reduced water loss was associated with, and may have been cued by, a reduction in the water potential of the gall tissues surrounding the larvae. The second phase was a more subtle fourfold reduction in rates of water loss occurring between 16 October and 11 December. In contrast to the first phase, the second phase of increased desiccation resistance correlated closely with increases in hemolymph osmolality (568-870 mOsmol kg(-1)). The correlation between seasonal increases in hemolymph osmolality and reduction in rates of water loss may represent a link between desiccation resistance and cold-tolerance in this species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.01320 | DOI Listing |
Nat Commun
January 2025
Centre for Marine Magnetism (CM2, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Under sustained global warming, Arctic climate is projected to become more responsive to changes in North Pacific meridional heat transport as a result of teleconnections between low and high latitudes, but the underlying mechanisms remain poorly understood. Here, we reconstruct subarctic humidity changes over the past 400 kyr to investigate the role of low-to-high latitude interactions in regulating Arctic hydroclimate. Our reconstruction is based on precipitation-driven sediment input variations in the Subarctic North Pacific (SANP), which reveal a strong precessional cycle in subarctic humidity under the relatively low eccentricity variations that dominated the past four glacial-interglacial cycles.
View Article and Find Full Text PDFNature
January 2025
Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand.
The fate of the West Antarctic Ice Sheet (WAIS) is the largest cause of uncertainty in long-term sea-level projections. In the last interglacial (LIG) around 125,000 years ago, data suggest that sea level was several metres higher than today, and required a significant contribution from Antarctic ice loss, with WAIS usually implicated. Antarctica and the Southern Ocean were warmer than today, by amounts comparable to those expected by 2100 under moderate to high future warming scenarios.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands. Electronic address:
Background: Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC).
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. Electronic address:
The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:
The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!