The magnetotactic multicellular prokaryote (MMP), a motile aggregate of bacterial cells, is known to exhibit an unusual "ping-pong" motility in magnetic fields greater than the earth's field. This motility is characterized by rapid excursions, opposite the direction of an applied magnetic field, and slower returns along the direction of the magnetic field. We have carried out detailed observations of the time and spatial dependence of the ping-pong motility and find 1), the outward and return excursions exhibit a uniform deceleration and acceleration, respectively; 2), the probability per unit time of an MMP undergoing a ping-pong excursion increases monotonically with the field strength; and 3), the outward excursions exhibit a very unusual distance distribution which is dependent on the magnetic field strength. At any given field strength, a characteristic distance is observed, below which very few excursions occur. Beyond this distance, there is a rapid increase in the number of excursions with an exponentially decaying distribution. These observations cannot be explained by conventional magnetotaxis, i.e., a physical directing torque on the organism, and suggest a magnetoreceptive capability of the MMP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305151PMC
http://dx.doi.org/10.1529/biophysj.104.047068DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
field strength
12
exhibit unusual
8
excursions exhibit
8
field
6
excursions
5
observation magnetoreceptive
4
magnetoreceptive behavior
4
behavior multicellular
4
multicellular magnetotactic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!