Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis.

FEBS Lett

Division of Immunology and Allergy, Departments of Pediatrics and Immunology, Infection, Immunity, Injury and Repair Program, Research Institute, The University of Toronto, Ont., Canada M5G 1X8.

Published: November 2004

Mutations in mitochondrial DNA (mtDNA) cause excessive production of mitochondrial reactive oxygen species (ROS) and shorten animal life span. We examined the mechanisms responsible for removal of mitochondria with deleterious mtDNA mutations by autophagy. Incubation of primary cells and cell lines in the absence of serum promotes autophagy of mitochondria with deleterious mtDNA mutations but spares their normal counterparts. The effect of serum withdrawal on the autophagy of dysfunctional mitochondria is prevented by the addition of IGF-1. As a result of the elimination of mitochondria with deleterious mutations, excessive ROS production, characteristic of dysfunctional mitochondria, is greatly reduced. Mitochondrial autophagy shares a common mechanism with mitochondrial-induced cell apoptosis, including mitochondrial transition pore formation and increased ROS production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.10.040DOI Listing

Publication Analysis

Top Keywords

dysfunctional mitochondria
12
mitochondria deleterious
12
autophagy dysfunctional
8
deleterious mtdna
8
mtdna mutations
8
ros production
8
mitochondria
6
autophagy
5
igf-1 balance
4
balance autophagy
4

Similar Publications

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis.

Scand J Gastroenterol

January 2025

Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.

Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.

Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.

View Article and Find Full Text PDF

Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health.

View Article and Find Full Text PDF

Unlabelled: Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function.

View Article and Find Full Text PDF

Colorectal cancer (CRC), as one of the malignant tumors with the highest incidence and mortality rates worldwide in recent years, originating primarily from the mucosal tissues of the colon or rectum, and has the potential to rapidly develop into invasive cancer. Its pathogenesis is complex, involving a multitude of factors including genetic background, lifestyle, and dietary habits. Early detection and treatment are key to improving survival rates for patients with CRC.

View Article and Find Full Text PDF

The role of mitochondria in aging, cell death, and tumor immunity.

Front Immunol

December 2024

Department of Medicine, University of Florida (UF) Health Cancer Center, University of Florida, Gainesville, FL, United States.

Mitochondria are essential double-membrane organelles with intricate structures and diverse functions within cells. Under normal physiological conditions, mitochondria regulate cellular metabolism and maintain energy homeostasis via the electron transport chain, mediate stem cell fate, and modulate reactive oxygen species production, playing a pivotal role in energy supply and lifespan extension. However, mitochondrial dysfunction can lead to various pathological changes, including cellular aging, necrosis, dysregulated tumor immunity, and the initiation and progression of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!