A sensitive and versatile ion pair radio high-performance liquid chromatography (HPLC) method for the investigation of the deoxyxylulose phosphate (DXP) pathway has been developed, allowing the simultaneous separation of phosphorylated, nonphosphorylated, and nucleotide moieties bearing intermediates. Moreover, this method addresses the problem of separating the isomers isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP). Because the majority of the intermediates of this isoprenoid pathway lack a chromophore, the combination with an on-line radiodetector provides a highly sensitive tool for their detection. Chromoplasts isolated from Capsicum annuum and Narcissus pseudonarcissus served as model systems for the testing of the analytical procedures after the application of radiolabeled precursors. This HPLC system, which represents an improvement in analytical methods developed for the analysis of the mevalonic acid pathway, should be easily adaptable to other plant and bacterial systems and should permit further elucidation of the regulatory mechanisms that control the flow of intermediates through the DXP pathway and the coordination with related metabolic pathways. Moreover, the system can serve as an analytical tool in the screening for inhibitors of this pathway, allowing the development of new antibiotics as well as herbicides, because this pathway is absent in vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2004.09.013DOI Listing

Publication Analysis

Top Keywords

high-performance liquid
8
liquid chromatography
8
deoxyxylulose phosphate
8
dxp pathway
8
pathway
7
chromatography method
4
method analysis
4
intermediates
4
analysis intermediates
4
intermediates deoxyxylulose
4

Similar Publications

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Background/purpose: Dual-cure resin-cements are used for various dental restorations. However, whether the curing modes of these resin-cements influence gingival inflammation remains unclear. Hence, herein, we evaluated the effects of dual-cure resin-cement curing modes on gingival cytotoxicity and inflammatory responses.

View Article and Find Full Text PDF

Background: Several cases of pheochromocytoma presenting with hypertensive crises after anesthesia induction, possibly caused by rocuronium injection, have been reported. Rocuronium has two compositions: rocuronium bromide (RB) in sodium acetate hydrate/acetic acid buffer solution (acetic acid vehicle) and RB in glycine/hydrochloric acid buffer solution (hydrochloric acid vehicle). This study assessed the effect of rocuronium composition on the release of catecholamine from PC-12 rat adrenal pheochromocytoma cells.

View Article and Find Full Text PDF

Background: Selpercatinib, a selective RET kinase inhibitor, is approved for treating various cancers with RET gene mutations such as RET-rearranged thyroid cancer and non-small cell lung cancer. The presence of process-related and degradation impurities in its active pharmaceutical ingredient (API) can significantly affect its safety and effectiveness. However, research on detecting these impurities is limited.

View Article and Find Full Text PDF

Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.

Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!