Lingzhi is the Chinese name given to the Ganoderma family of mushrooms, which was considered the most valuable medicine in ancient China and was believed to bring longevity, due to its mysterious power of healing the body and calming the mind. Today, Lingzhi is still widely revered as a valuable health supplement and herbal medicine worldwide, as studies (mostly conducted in China, Korea, Japan and the United States) into the medicinal and nutritional values of Lingzhi revealed that it does indeed contain certain bioactive ingredients (such as triterpenes and polysaccharides) that might be beneficial for the prevention and treatment of a variety of ailments, including important diseases such as hypertension, diabetes, hepatitis, cancers, and AIDS. As research into the biological activities of Lingzhi, as well as the quality assurance and quality control of Lingzhi products, require the isolation/purification of active ingredients from Lingzhi, followed by subsequent analytical and/or preparative separations, the present review summarizes the various chromatographic and electrophoretic methods (as well as sample pretreatment methods) typically employed to achieve such extraction/separation procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2004.08.038 | DOI Listing |
J Sep Sci
December 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany.
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.
View Article and Find Full Text PDFADMET DMPK
May 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
Background And Purpose: The ligands of the imidazoline and α-adrenergic receptors are mainly imidazoline and guanidine derivatives, known as centrally-acting antihypertensives and compounds with potential use in various neurological disorders. The extent of their ionisation has a major influence on their behaviour in the different analytical systems. The main objective of this work was to compare the mechanism of chromatographic retention and electrophoretic mobility under acidic, neutral and basic conditions.
View Article and Find Full Text PDFJ Chromatogr A
November 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany. Electronic address:
Electrophoresis
November 2024
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species.
View Article and Find Full Text PDFJ Virol Methods
December 2024
A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation; Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation. Electronic address:
The pS273R protease of the African swine fever virus (ASFV) is responsible for the processing of the viral polyproteins pp220 and pp62, precursors of the internal capsid of the virus. The protease is essential for a productive viral infection and is an attractive target for antiviral therapy. This work presents a method for the production of pS273R in E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!