Buffering and H+ ion dynamics in muscle tissues.

Respir Physiol Neurobiol

Department of Animal Physiology, Humboldt Universität zu Berlin, D-10115 Berlin, Germany.

Published: December 2004

After anaerobic activity with release of large quantities of intermediary metabolic end products, further energy production critically depends on rapid elimination of H+ ions from the muscle tissues to secure key enzymatic activities. The involved processes, interactions and interrelationships of mechanisms have been analyzed on the basis of a physiological model and available experimental data. The H+ elimination from muscle tissue is a multifactorial process primarily governed by the capillary H+ transport capacitance, effected by buffering capabilities of intracellular and capillary fluids compartments, by dynamically interrelated regulation of intracellular and extracellular pH, by the magnitude and quality of convective perfusional transfer and further factors. Model calculations strongly resemble experimental data obtained in isolated perfused muscles and suggest that discrepancies between disparate literature data are attributable to experimental limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2004.06.019DOI Listing

Publication Analysis

Top Keywords

muscle tissues
8
experimental data
8
buffering ion
4
ion dynamics
4
dynamics muscle
4
tissues anaerobic
4
anaerobic activity
4
activity release
4
release large
4
large quantities
4

Similar Publications

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Introduction: Many interventional strategies are commonly used to treat chronic low back pain (CLBP), though few are specifically intended to target the distinct underlying pathomechanisms causing low back pain. Restorative neurostimulation has been suggested as a specific treatment for mechanical CLBP resulting from multifidus dysfunction. In this randomized controlled trial, we report outcomes from a cohort of patients with CLBP associated with multifidus dysfunction treated with restorative neurostimulation compared to those randomized to a control group receiving optimal medical management (OMM) over 1 year.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

The role of paraspinal muscle degeneration in cervical spondylosis.

Eur Spine J

January 2025

Department of Tuina and Spinal Orthopaedic in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.

Purpose: To explore the relationship between paraspinal muscle degeneration and cervical spondylosis through cervical spine MRI and lateral X-ray.

Methods: A retrospective study included 83 cervical spondylosis patients as the experimental group, consisting of 28 axial joint pain (Group A), 29 cervical radiculopathy (Group B), and 26 myelopathy (Group C), as well as 29 healthy individuals as the control group (Group D). The cross-sectional area (CSA) of paraspinal muscles at the C3-4, C4-5, and C5-6 segments was measured, including the deep extensor area (DEA), deep flexor area (DFA), and superficial extensor area (SEA).

View Article and Find Full Text PDF

Purpose: The effect of skeletal muscle mass of the trunk and extremities on sagittal imbalance of the spine before and after surgery for adult spinal deformity (ASD) has not been elucidated. The purpose of this study was to examine the correlation between reduced skeletal muscle mass of the trunk and extremities, as well as spinopelvic parameters, preoperatively, postoperatively and at least 2 years after surgery for ASD.

Methods: This retrospective observational study included 140 consecutive patients who had undergone surgery for ASD and were followed-up for at least 2 years and whose skeletal muscle mass could be measured preoperatively using whole-body dual-energy X-ray absorptiometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!