Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis.

FEMS Yeast Res

Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark.

Published: December 2004

The role of Grr1p in glucose sensing in Saccharomyces cerevisiae was elucidated through genome-wide transcription analysis. From triplicate analysis of a strain with deletion of the GRR1-gene from the genome and an isogenic reference strain, 68 genes were identified to have significantly altered expression using a Student's t-test with Bonferroni correction. These 68 genes were widely distributed across different parts of the cellular metabolism and GRR1-deletion is therefore concluded to result in polytrophic effects, indicating multiple roles for Grr1p. Using a less conservative statistical test, namely the SAM test, 232 genes were identified as having significantly altered expression, and also these genes were widely distributed across different parts of the cellular metabolism. Promoter analyses on a genome-wide scale and on the genes with significant changes revealed an over-representation of DNA-binding motifs for the transcriptional regulators Mig1p and Rgt1p in the promoter region of the significantly altered genes, indicating that Grr1p plays an important role in the regulatory pathways that ultimately lead to transcriptional regulation by each of the components Mig1p and Rgt1p.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.femsyr.2004.06.013DOI Listing

Publication Analysis

Top Keywords

role grr1p
8
grr1p glucose
8
glucose sensing
8
sensing saccharomyces
8
saccharomyces cerevisiae
8
genome-wide transcription
8
transcription analysis
8
genes identified
8
identified altered
8
altered expression
8

Similar Publications

The F-box protein Grr1p is involved in cell cycle regulation, glucose repression and transcriptional induction of the amino acid permease (AAP) gene AGP1. We investigated the role of Grr1p in amino acid-mediated induction of AAP genes by performing batch cultivations with a wild-type strain and a grr1Delta strain and adding citrulline in the exponential phase. Whole-genome transcription analyses were performed on samples from each cultivation, both immediately before and 30 min after citrulline addition.

View Article and Find Full Text PDF

In the budding yeast Saccharomyces cerevisiae, the cell division cycle and sporulation are mutually exclusive cell fates; glucose, which stimulates the cell division cycle, is a potent inhibitor of sporulation. Addition of moderate concentrations of glucose (0.5%) to sporulation medium did not inhibit transcription of two key activators of sporulation, IME1 and IME2, but did increase levels of Sic1p, a cyclin-dependent kinase inhibitor, resulting in a block to meiotic DNA replication.

View Article and Find Full Text PDF

The role of Grr1p in glucose sensing in Saccharomyces cerevisiae was elucidated through genome-wide transcription analysis. From triplicate analysis of a strain with deletion of the GRR1-gene from the genome and an isogenic reference strain, 68 genes were identified to have significantly altered expression using a Student's t-test with Bonferroni correction. These 68 genes were widely distributed across different parts of the cellular metabolism and GRR1-deletion is therefore concluded to result in polytrophic effects, indicating multiple roles for Grr1p.

View Article and Find Full Text PDF

Addition of glucose to Saccharomyces cerevisiae inactivates the galactose transporter Gal2p and fructose-1,6-bisphosphatase (FBPase) by a mechanism called glucose- or catabolite-induced inactivation, which ultimately results in a degradation of both proteins. It is well established, however, that glucose induces internalization of Gal2p into the endocytotic pathway and its subsequent proteolysis in the vacuole, whereas FBPase is targeted to the 26 S proteasome for proteolysis under similar inactivation conditions. Here we report that two distinct proteolytic systems responsible for specific degradation of two conditionally short-lived protein targets, Gal2p and FBPase, utilize most (if not all) protein components of the same glucose sensing (signaling) pathway.

View Article and Find Full Text PDF

The SSY1 gene of Saccharomyces cerevisiae encodes a member of a large family of amino acid permeases. Compared to the 17 other proteins of this family, however, Ssy1p displays unusual structural features reminiscent of those distinguishing the Snf3p and Rgt2p glucose sensors from the other proteins of the sugar transporter family. We show here that SSY1 is required for transcriptional induction, in response to multiple amino acids, of the AGP1 gene encoding a low-affinity, broad-specificity amino acid permease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!