It is well known that the SOM algorithm achieves a clustering of data which can be interpreted as an extension of Principal Component Analysis, because of its topology-preserving property. But the SOM algorithm can only process real-valued data. In previous papers, we have proposed several methods based on the SOM algorithm to analyze categorical data, which is the case in survey data. In this paper, we present these methods in a unified manner. The first one (Kohonen Multiple Correspondence Analysis, KMCA) deals only with the modalities, while the two others (Kohonen Multiple Correspondence Analysis with individuals, KMCA_ind, Kohonen algorithm on DISJonctive table, KDISJ) can take into account the individuals, and the modalities simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2004.07.010 | DOI Listing |
Glob Health Action
December 2024
Faculty of Health Sciences, School of Medicine, Universidad Continental, Lima, Peru.
Background: Human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) have evolved into a global development burden, with nearly 40 million infections and 25 million deaths. Compared to other age groups, youth have increased risks of contracting the disease due to social and health structural factors; thus, additional efforts are needed to effectively tackle the challenges associated with this age group. Epidemiological studies employing unsupervised learning techniques are essential for shaping public health policies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, Henry Ford Hospital, Detroit, USA.
Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Education, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia.
To improve the scientific accuracy and precision of children's physical fitness evaluations, this study proposes a model that combines self-organizing maps (SOM) neural networks with cluster analysis. Existing evaluation methods often rely on traditional, single statistical analyses, which struggle to handle the complexity of high-dimensional, nonlinear data, resulting in a lack of precision and personalization. This study uses the SOM neural network to reduce the dimensionality of high-dimensional health data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
This study addresses the limited noninvasive tools for Head and Neck Squamous Cell Carcinoma (HNSCC) progression-free survival (PFS) prediction by identifying Computed Tomography (CT)-based biomarkers for predicting prognosis. A retrospective analysis was conducted on data from 203 HNSCC patients. An ensemble feature selection involving correlation analysis, univariate survival analysis, best-subset selection, and the LASSO-Cox algorithm was used to select functional features, which were then used to build final Cox Proportional Hazards models (CPH).
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Providence Portland Medical Center, Portland, Oregon, USA.
Objectives: Multiplex immunohistochemistry and immunofluorescence (mIHC/IF) are emerging technologies that can be used to help define complex immunophenotypes in tissue, quantify immune cell subsets, and assess the spatial arrangement of marker expression. mIHC/IF assays require concerted efforts to optimize and validate the multiplex staining protocols prior to their application on slides. The best practice guidelines for staining and validation of mIHC/IF assays across platforms were previously published by this task force.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!