This study investigated the effects of long-term dietary lipids on mature bone mineral content, collagen concentration, crosslink levels, bone marrow and ex vivo prostaglandin E2 (PGE2) biosynthesis, as well as the relationship of PGE2 production to these bone formation parameters. One-month-old male Japanese quail were given a basal diet containing 1 of 4 lipid sources: soybean oil (SBO), hydrogenated soybean oil (HSBO), chicken fat (CF), or menhaden fish oil (FO) at 50 g/kg of the diet. At 8 mo of age, lipid treatments did not affect bone length, diameter, or weight in quail. Quail fed SBO or CF had significantly lower levels of mineral content in tibial bones compared with those given FO. Bone collagen level was significantly higher in quail consuming SBO than those given HSBO or CF. Collagen crosslink concentration was markedly increased in birds provided FO or HSBO compared with those fed SBO or CF. Prostaglandin E2 biosynthesis in bone organ culture and marrow were greatly increased in quail maintained on the SBO or CF diet compared with those given the FO or HSBO diet. Prostaglandin E2 production in the bone microenvironment was negatively correlated with tibial ash and collagen crosslinks but had a positive correlation with tibial collagen levels. These results support our previous findings that long-term exposure to diets high in SBO or CF impaired mature bone mechanical properties and histological characteristics. Further, the results suggest that long-term supplementation of SBO or CF in the diet had a significant adverse effect on mature bone metabolism, and that dietary lipids altered bone metabolism, perhaps partially by controlling the production of local regulatory factor in bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ps/83.11.1876 | DOI Listing |
J Dent Sci
January 2025
Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
Background/purpose: Orthodontic movement is often necessary for periodontally compromised patients to enhance esthetics, function, and long-term occlusal stability. However, the impact of orthodontic treatment immediately following the regeneration of intrabony defects on periodontal healing remains a topic of debate. The objective of this long-term case series study was to test the hypothesis that orthodontic treatment performed immediately after regenerative procedures for periodontal intrabony defects did not adversely affect periodontal healing.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Dentistry, Yeungnam University College of Medicine, Daegu, Republic of Korea.
Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.
View Article and Find Full Text PDFPLoS Genet
January 2025
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia.
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.
View Article and Find Full Text PDFNon-myeloablative hematopoietic cell transplantation (HCT) is a curative option for individuals with sickle cell disease (SCD). Our traditional goal with this approach has been to achieve a state of mixed donor/recipient chimerism. Recently, we reported an increased risk of hematologic malignancies (HMs) in adults with SCD following graft failure or mixed chimerism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!