A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relationship between ATP resynthesis and calcium accumulation in the reperfused rat heart. | LitMetric

Relationship between ATP resynthesis and calcium accumulation in the reperfused rat heart.

Clin Exp Pharmacol Physiol

Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia.

Published: February 1992

AI Article Synopsis

  • The study examined how different solutions for reperfusing ischemic rat hearts affect their ability to produce energy compounds like ATP.
  • In the experiment, isolated rat hearts underwent a period of ischemia followed by reperfusion using either a control solution or a special 'myocardial protective solution' aimed at preventing damage from sodium, calcium, and free radicals.
  • Results showed that while ATP and creatine phosphate levels initially recovered during reperfusion, they declined significantly over time, but maintenance of ATP was better with the 'myocardial protective solution', especially when it was oxygenated.

Article Abstract

1. The postulate that the composition of solutions used to reperfuse ischaemic hearts may modulate their ability to synthesize high-energy compounds was tested in isolated rat hearts subjected to 30 min normothermic ischaemia and then reperfused with either Krebs'-Henseleit buffer (K-H) for 20 min (control reperfusion, CR), or a 'myocardial protective solution' (MPS) for 5 min, followed by 15 min K-H (modified reperfusion, MR). The 'myocardial protective solution' was designed to protect against damage caused by sodium and calcium accumulation and by free radicals. Metabolic precursors were also included to promote and support adenosine triphosphate (ATP) resynthesis during reperfusion under both aerobic and hypoxic conditions. 2. 31P nuclear magnetic resonance (NMR) was used to measure tissue ATP and creatine phosphate (CP), and atomic absorption spectrometry was used to measure Ca++. Early during CR, ATP recovered to 28% of the pre-ischaemic value, but fell to 5.5% with continued perfusion. Similarly, CP recovered to 45.5% of the pre-ischaemic level during early CR but fell to 25.5% with continued perfusion. 3. Better maintenance of ATP was seen during MR with oxygenated MPS (O2-MR), the final ATP remaining at 16.9% of the pre-ischaemic level. During O2-MR, CP recovered to 43.55 of the pre-ischaemic level but was not maintained and fell to a final level of 29.5%. 4. During MR with O2-free MPS (non-O2-MR), there was no reperfusion-associated fall in ATP or CP, with the levels maintained at 26.6% and 34.55, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1681.1992.tb00425.xDOI Listing

Publication Analysis

Top Keywords

pre-ischaemic level
12
atp resynthesis
8
calcium accumulation
8
reperfusion 'myocardial
8
'myocardial protective
8
protective solution'
8
continued perfusion
8
atp
6
relationship atp
4
resynthesis calcium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!