Molecular targeting in radiotherapy of lung cancer.

Lung Cancer

Dept. of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany.

Published: August 2004

Molecular targeting is a promising option to increase the radiation response of tumours and to decrease normal tissue reactions, i.e. to achieve therapeutic gain. Molecular targeting substances in themselves are not curative while radiation is a highly efficient cytotoxic agent, with local recurrences often occurring from only few surviving clonogenic cells. High-dose radiotherapy therefore offers optimal conditions to evaluate the potential of specific biology-driven drugs for oncology. This review summarises the current status of preclinical and clinical research on combined radiation with examples of molecular targeting substances relevant for the treatment of NSCLC (EGFR, COX-2, VEGFR, KGF, TGF-beta, BBI).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lungcan.2004.07.975DOI Listing

Publication Analysis

Top Keywords

molecular targeting
16
targeting substances
8
molecular
4
targeting radiotherapy
4
radiotherapy lung
4
lung cancer
4
cancer molecular
4
targeting promising
4
promising option
4
option increase
4

Similar Publications

Molecular glues (MGs) and proteolysis-targeting chimeras (PROTACs) are used to modulate protein-protein interactions (PPIs), via induced proximity between compounds that have little or no affinity for each other naturally. They promote either reversible inhibition or selective degradation of a target protein, including ones deemed undruggable by traditional therapeutics. Though native MS (nMS) is capable of analyzing multiprotein complexes, the behavior of these artificially induced compounds in the gas phase is still not fully understood, and the number of publications over the past few years is still rather limited.

View Article and Find Full Text PDF

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!