The expectation-maximization (EM) algorithm is an important tool for maximum-likelihood (ML) estimation and image reconstruction, especially in medical imaging. It is a non-linear iterative algorithm that attempts to find the ML estimate of the object that produced a data set. The convergence of the algorithm and other deterministic properties are well established, but relatively little is known about how noise in the data influences noise in the final reconstructed image. In this paper we present a detailed treatment of these statistical properties. The specific application we have in mind is image reconstruction in emission tomography, but the results are valid for any application of the EM algorithm in which the data set can be described by Poisson statistics. We show that the probability density function for the grey level at a pixel in the image is well approximated by a log-normal law. An expression is derived for the variance of the grey level and for pixel-to-pixel covariance. The variance increases rapidly with iteration number at first, but eventually saturates as the ML estimate is approached. Moreover, the variance at any iteration number has a factor proportional to the square of the mean image (though other factors may also depend on the mean image), so a map of the standard deviation resembles the object itself. Thus low-intensity regions of the image tend to have low noise. By contrast, linear reconstruction methods, such as filtered back-projection in tomography, show a much more global noise pattern, with high-intensity regions of the object contributing to noise at rather distant low-intensity regions. The theoretical results of this paper depend on two approximations, but in the second paper in this series we demonstrate through Monte Carlo simulation that the approximations are justified over a wide range of conditions in emission tomography. The theory can, therefore, be used as a basis for calculation of objective figures of merit for image quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/39/5/004 | DOI Listing |
Circ Cardiovasc Interv
January 2025
Division of Cardiology, Weill Cornell Medicine, New York, NY (D.N.F.).
Circ Cardiovasc Interv
January 2025
Division of Cardiology, Department of Medicine, University of Washington Medical Center, Seattle (E.J.S., T. Salahuddin, J.A.D.).
Background: Intravascular imaging (IVI) is widely recognized to improve outcomes after percutaneous coronary intervention (PCI). However, IVI is underutilized and is not yet established as a performance measure for quality PCI.
Methods: We examined temporal trends of IVI use for all PCIs performed at Veterans Affairs hospitals in the United States from 2010 to 2022 using retrospective observational cohorts.
Circ Arrhythm Electrophysiol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (T.H., M.E.R., O.Y., G.N.K., N.O., T.K., L.N., D.L.P., K.C.S.).
Background: Power-controlled radiofrequency ablation with irrigated-tip catheters has been the norm for ventricular ablation for almost 2 decades. New catheter technology has recently integrated more accurate tissue temperature sensing enabling temperature-controlled irrigated ablation. We aimed to investigate the in vivo ablation parameters and lesion formation characteristics in ventricular myocardium using a novel temperature-controlled radiofrequency catheter.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.
View Article and Find Full Text PDFSeveral studies suggested that total hip arthroplasty (THA) was more technical demanding following previous pelvic osteotomy (PO), resulting in poor outcomes compared with primary THA. However, the other studies regarding this topic had reported contradictory results. Therefore, we conducted this meta-analysis to compare the clinical results and other parameters between total hip arthroplasty following pelvic osteotomy and primary total hip arthroplasty.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!