In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKS) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKS. This requires the probability of interaction, determined by the linear attenuation coefficient, mu, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKS generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio mu ab/mu as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKS generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKS, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/39/4/002 | DOI Listing |
Talanta
January 2025
Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India. Electronic address:
The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD.
View Article and Find Full Text PDFActa Oncol
January 2025
Department of Oncology, Oslo University Hospital, Norway.
Background And Purpose: To present the clinical outcomes of two series of patients treated with carbon-ion radiotherapy (CIRT) and definitive photon radiotherapy (RT) for adenoid cystic carcinoma of the head and neck (HN-ACC).
Material And Methods: The first cohort of six patients was referred from Oslo University Hospital (OUS) to Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy) for CIRT in 2014-2017. The second cohort included 18 patients treated with definitive photon RT at OUS in 2005-2017.
J Chem Phys
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.
Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.
Plant Cell Environ
January 2025
Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany.
The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!