Molecular recognition and crystal energy landscapes: an X-ray and computational study of caffeine and other methylxanthines.

Chemistry

Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, via Venezian 21, 20133 Milano, Italy.

Published: December 2004

We introduce a new approach to crystal-packing analysis, based on the study of mutual recognition modes of entire molecules or of molecular moieties, rather than a search for selected atom-atom contacts, and on the study of crystal energy landscapes over many computer-generated polymorphs, rather than a quest for the one most stable crystal structure. The computational tools for this task are a polymorph generator and the PIXEL density sums method for the calculation of intermolecular energies. From this perspective, the molecular recognition, crystal packing, and solid-state phase behavior of caffeine and several methylxanthines (purine-2,6-diones) have been analyzed. Many possible crystal structures for anhydrous caffeine have been generated by computer simulation, and the most stable among them is a thermodynamic, ordered equivalent of the disordered phase, revealed by powder X-ray crystallography. Molecular recognition energies between two caffeine molecules or between caffeine and water have been calculated, and the results reveal the largely predominant mode to be the stacking of parallel caffeine molecules, an intermediately favorable caffeine-water interaction, and many other equivalent energy minima for lateral interactions of much less stabilization power. This last indetermination helps to explain why caffeine does not crystallize easily into an ordered anhydrous structure. In contrast, the mono- and dimethylxanthines (theophylline, theobromine, and the 1,7-isomer, for which we present a single-crystal X-ray study and a lattice energy landscape) do crystallize in anhydrous form thanks to the formation of lateral hydrogen bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200400499DOI Listing

Publication Analysis

Top Keywords

molecular recognition
12
recognition crystal
8
crystal energy
8
energy landscapes
8
caffeine methylxanthines
8
caffeine molecules
8
caffeine
7
crystal
5
molecular
4
energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!