Towards a structural view of gating in potassium channels.

Nat Rev Neurosci

Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC 3701, Bethesda, MD 20892-3701, USA.

Published: December 2004

Voltage-activated cation channels have pores that are selective for K(+), Na(+) or Ca(2+). Neurons use these channels to generate and propagate action potentials, release neurotransmitters at synaptic terminals and integrate incoming signals in dendrites. Recent X-ray and electron microscopy studies of an archaebacterial voltage-activated K(+) (Kv) channel have provided the first atomic resolution images of the voltage-sensing domains in Kv channels. Although these structures are consistent with previous biophysical analyses of eukaryotic channels, they also contain surprises, which have provoked new ideas about the structure and movements of these proteins during gating. This review summarizes our current understanding of these intriguing membrane proteins and highlights the open questions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrn1559DOI Listing

Publication Analysis

Top Keywords

channels
5
structural view
4
view gating
4
gating potassium
4
potassium channels
4
channels voltage-activated
4
voltage-activated cation
4
cation channels
4
channels pores
4
pores selective
4

Similar Publications

A Cross-scale Attention-Based U-Net for Breast Ultrasound Image Segmentation.

J Imaging Inform Med

January 2025

Health Informatics, College of Public Health, George Mason University, Fairfax, VA, 22030, USA.

Breast cancer remains a significant global health concern and is a leading cause of mortality among women. The accuracy of breast cancer diagnosis can be greatly improved with the assistance of automatic segmentation of breast ultrasound images. Research has demonstrated the effectiveness of convolutional neural networks (CNNs) and transformers in segmenting these images.

View Article and Find Full Text PDF

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformity governed of the spine. A child's Risser stage of skeletal maturity must be carefully considered for AIS evaluation and treatment. However, there are intra-observer and inter-observer inaccuracies in the Risser stage manual assessment.

View Article and Find Full Text PDF

Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis.

Nat Plants

January 2025

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.

View Article and Find Full Text PDF

Elucidating the molecular basis of salt tolerance in potatoes through miRNA expression and phenotypic analysis.

Sci Rep

January 2025

Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.

Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!