The human polyomavirus, JCV, causes the fatal demyelinating disease progressive multifocal leukoencephalopathy in immunocompromised patients. We found that the serotonergic receptor 5HT2AR could act as the cellular receptor for JCV on human glial cells. The 5HT2A receptor antagonists inhibited JCV infection, and monoclonal antibodies directed at 5HT2A receptors blocked infection of glial cells by JCV, but not by SV40. Transfection of 5HT2A receptor-negative HeLa cells with a 5HT2A receptor rescued virus infection, and this infection was blocked by antibody to the 5HT2A receptor. A tagged 5HT2A receptor colocalized with labeled JCV in an endosomal compartment following internalization. Serotonin receptor antagonists may thus be useful in the treatment of progressive multifocal leukoencephalopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1103492DOI Listing

Publication Analysis

Top Keywords

5ht2a receptor
16
human polyomavirus
8
polyomavirus jcv
8
progressive multifocal
8
multifocal leukoencephalopathy
8
glial cells
8
cells 5ht2a
8
receptor antagonists
8
receptor
7
jcv
6

Similar Publications

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

Population pharmacokinetics of blonanserin in Japanese adolescent and adult patients with schizophrenia.

Drug Metab Pharmacokinet

November 2024

Clinical Research, Drug Development Division, Sumitomo Pharma Co., Ltd., 33-94, Enoki-cho, Suita, Osaka, 564-0053, Japan. Electronic address:

The second-generation antipsychotic blonanserin is a highly selective, full antagonist of dopamine D and D and serotonin 5-HT receptors. It is currently prescribed for patients with schizophrenia in Japan. We aimed to develop a population pharmacokinetic model of oral blonanserin, including data from 12 to 77 years old patients, to assess the covariates that influence blonanserin pharmacokinetics and evaluate appropriate dosage regimens in adolescents versus adults.

View Article and Find Full Text PDF

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Lumateperone is a novel antipsychotic recently approved for the treatment of schizophrenia. Its unique pharmacological profile includes modulation of serotonergic, dopaminergic, and glutamatergic neurotransmission, differentiating it from other second-generation antipsychotics. This paper explores the pharmacological features and clinical potential of lumateperone across neuropsychiatric conditions.

View Article and Find Full Text PDF

Promising clinical evidence suggests that psychedelic compounds, like lysergic acid diethylamide (LSD), have therapeutic value for treatment of psychiatric disorders. However, they often produce hallucinations and dissociative states, likely mediated by the serotonin (5-HT) receptor 5-HT, raising challenges regarding therapeutic scalability. Given the reported antipsychotic effects of cannabidiol (CBD) and its promiscuous binding at many receptors, we assessed whether CBD could modulate 5-HT signalling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!