Functional effects of C-type natriuretic peptide and nitric oxide are attenuated in hypertrophic myocytes from pressure-overloaded mouse hearts.

Am J Physiol Heart Circ Physiol

Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.

Published: March 2005

Increases in the myocardial level of cGMP usually exert negative inotropic effects in the mammalian hearts. We tested the hypothesis that the negative functional effects caused by nitric oxide (NO) or C-type natriuretic peptide (CNP) through cGMP would be blunted in hypertrophied cardiac myocytes. Contractile function, guanylyl cyclase activity, cGMP-dependent protein phosphorylation, and calcium transients were assessed in ventricular myocytes from aortic stenosis-induced hypertrophic and age-matched control mice. Basal percentage shortening was similar in control and hypertrophic myocytes. S-nitroso-N-acetyl-penicillamine (SNAP, an NO donor, 10(-6) and 10(-5) M) or CNP (10(-8) and 10(-7) M) reduced percentage shortening in both groups, but their effects were blunted in hypertrophic myocytes. Maximal rates of shortening and relaxation were depressed at the basal level, and both reagents had attenuated effects in hypertrophy. Similar results were also found after treatment with guanylin and carbon monoxide, other stimulators of particulate, and soluble guanylyl cyclase, respectively. Guanylyl cyclase activity was not significantly changed in hypertrophy. Addition of Rp-8-[(4-chlorophenyl)thio]-cGMPS triethylamine (an inhibitor of cGMP-dependent protein kinase, 5 x 10(-6) M) blocked SNAP or the effect of CNP in control mice but not in hypertrophy, indicating the cGMP-dependent kinase (PKG) may not mediate the actions of cGMP induced by NO or CNP in the hypertrophic state. Calcium transients after SNAP or CNP were not significantly changed in hypertrophy. These results suggest that in hypertrophied mice, diminished effects of NO or CNP on ventricular myocyte contraction are not due to changes in guanylyl cyclase activity. The data also indicated that PKG-mediated pathways were diminished in hypertrophied myocardium, contributing to blunted effects.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00880.2004DOI Listing

Publication Analysis

Top Keywords

guanylyl cyclase
16
hypertrophic myocytes
12
cyclase activity
12
functional effects
8
c-type natriuretic
8
natriuretic peptide
8
nitric oxide
8
cgmp-dependent protein
8
calcium transients
8
control mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!