Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats.

Endocrinology

Endocrinology Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.

Published: February 2005

Altered peripheral glucocorticoid metabolism may be important in the pathogenesis of obesity in humans and animal models. Genetically obese Zucker rats, Lep/ob mice, and obese humans exhibit increased regeneration of active glucocorticoids selectively in adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) and increased glucocorticoid clearance by hepatic A-ring reductases. We have examined whether dietary obesity in rats induces the same changes in glucocorticoid metabolism. Male Wistar rats were weaned onto high-fat (HF; 45% kcal from fat) or control (10% fat) diets. After 3 wk, HF rats showed no differences in weight but were glucose intolerant, had lower 11beta-HSD-1 activity in liver (3.8 +/- 0.2 vs. 4.9 +/- 0.2 pmol product/min.mg protein; P <0.01), sc fat (0.03 +/- 0.01 vs. 0.09 +/- 0.01 pmol product/min.mg protein; P <0.01), and omental fat (0.02 +/- 0.001 vs. 0.03 +/- 0.003 pmol/ product/min.mg protein; P <0.05) and higher hepatic 5beta-reductase activity (0.26 +/- 0.05 vs. 0.10 +/- 0.007 pmol product/min.mg protein; P <0.05). After 20 wk, HF rats were obese, hyperglycemic, and hyperinsulinemic, but differences in 11beta-HSD-1 and 5beta-reductase activities were no longer apparent. Mature male rats given HF diets for 24 or 72 h showed increased hepatic 5beta-reductase activity and a trend for decreased sc adipose 11beta-HSD-1 activity. Dietary obesity is not accompanied by the changes in 11beta-HSD-1 and 5beta-reductase expression and activity observed in genetically obese rodents. Acute exposure to HF diet alters glucocorticoid metabolism, predicting lower hepatic and adipose intracellular glucocorticoid concentrations, which may be a key mechanism protecting against the metabolic complications of obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-1063DOI Listing

Publication Analysis

Top Keywords

glucocorticoid clearance
8
wistar rats
8
glucocorticoid metabolism
8
glucocorticoid
5
rats
5
reduced adipose
4
adipose glucocorticoid
4
glucocorticoid reactivation
4
reactivation increased
4
increased hepatic
4

Similar Publications

Background: Anti-NMDA receptor encephalitis is an autoimmune, antibody-mediated inflammatory disease of the brain characterized by the presence of IgG antibodies targeting the excitatory N-methyl-D-aspartate receptor (NMDAR). Previous research has established that the neonatal Fc receptor (FcRn) regulates the transport and circulation of immunoglobulins (IgG). Efgartigimod, an FcRn antagonist, has been shown to enhance patient outcomes by promoting IgG clearance, and it has exhibited substantial clinical efficacy and tolerability in the treatment of myasthenia gravis.

View Article and Find Full Text PDF

Meta-Analysis of the Input and Disposition of Various Dosage Forms of Methylprednisolone in Healthy Subjects Utilizing a Physiologically Based Pharmacokinetic Model.

AAPS J

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.

The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.

View Article and Find Full Text PDF

The Role of Scavenger Receptor BI in Sepsis.

Int J Mol Sci

December 2024

Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.

Sepsis is a life-threatening condition resulting from a dysregulated host response to infection. Currently, there is no effective therapy for sepsis due to an incomplete understanding of its pathogenesis. Scavenger receptor BI (SR-BI) is a high-density lipoprotein (HDL) receptor that plays a key role in HDL metabolism by modulating the selective uptake of cholesteryl ester from HDL.

View Article and Find Full Text PDF

China is experiencing a demographic shift as its population ages. The elderly population becomes increasingly susceptible to pneumonia. Pneumonia in the elderly is characterized by its insidious onset, rapid progression, multiple comorbidities, poor prognosis, and high morbidity and mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes help clear proteins and waste in the brain using aquaporin-4 (AQP4), which can be disrupted in stress-related disorders.
  • Dexamethasone (Dexa), a glucocorticoid used to model stress, was found to reduce the activity of AQP4 and its associated proteins in astrocytes, leading to impaired protein clearance.
  • The study suggests that blocking adenosine A receptors (AR) can restore AQP4 function and clearance, indicating a potential therapeutic strategy to address neurological disorders linked to stress and protein accumulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!