A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with (14)C-glucose and (3)H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD(+)] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665507 | PMC |
http://dx.doi.org/10.1113/jphysiol.2004.075713 | DOI Listing |
Transfusion
September 2010
Banco de Sangue de Sao Paulo, Sao Paulo, Brazil.
Background: The Dombrock (Do) blood group system consists of six distinct antigens: Do(a) , Do(b) , Gy(a) , Hy, Jo(a) , and DOYA. Our finding of a pregnant patient whose red blood cells (RBCs) were Hy+ but whose serum contained an apparent alloanti-Hy suggested the presence of a seventh antigen and prompted this study.
Study Design And Methods: Standard hemagglutination and polymerase chain reaction-based methods were used throughout.
J Physiol
January 2005
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob).
View Article and Find Full Text PDFJ Pharmacol Exp Ther
January 1990
Department of Psychiatry and Behavioral Science, State University of New York, Stony Brook.
The aim of the present study was to characterize 5-hydroxytryptamine2 (5-HT2) receptors in the rat medial prefrontal cortex (mPFc) by single cell recording and microiontophoretic techniques. This was accomplished using 5-HT2 receptor agonists 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane [(+/-)-DOI] and 1-[2,5-dimethoxy-4-bromophenyl]-2-aminopropane [(+/-)-DOB]. DOI ejected at a low current (0.
View Article and Find Full Text PDFBiochemistry
September 1979
During experiments to prepare heavy-metal derivatives of the crystallizable human IgG1 (k) immunoglobulin Dob, it became apparent that this protein has several unusual features. (1) Instead of the four labile interchain disulfide bridges ordinarily found in IgG1, the Dob protein has only a single interchain disulfide bridge, which connects its two light chains. (2) The Dob heavy chain appears to be slightly smaller than a control gamma1 chain, as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and by gel filtration in guanidine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!