Background: Gab1 is a docking protein that recruits phosphatidylinositol-3 kinase (PI-3 kinase) and other effector proteins in response to the activation of many receptor tyrosine kinases (RTKs). As the autophosphorylation sites on EGF-receptor (EGFR) do not include canonical PI-3 kinase binding sites, it is thought that EGF stimulation of PI-3 kinase and its downstream effector Akt is mediated by an indirect mechanism.
Results: We used fibroblasts isolated from Gab1-/- mouse embryos to explore the mechanism of EGF stimulation of the PI-3 kinase/Akt anti-apoptotic cell signaling pathway. We demonstrate that Gab1 is essential for EGF stimulation of PI-3 kinase and Akt in these cells and that these responses are mediated by complex formation between p85, the regulatory subunit of PI-3 kinase, and three canonical tyrosine phosphorylation sites on Gab1. Furthermore, complex formation between Gab1 and the protein tyrosine phosphatase Shp2 negatively regulates Gab1 mediated PI-3 kinase and Akt activation following EGF-receptor stimulation. We also demonstrate that tyrosine phosphorylation of ErbB3 may lead to recruitment and activation of PI-3 kinase and Akt in Gab1-/- MEFs.
Conclusions: The primary mechanism of EGF-induced stimulation of the PI-3 kinase/Akt anti-apoptotic pathway occurs via the docking protein Gab1. However, in cells expressing ErbB3, EGF and neuroregulin can stimulate PI-3 kinase and Akt activation in a Gab1-dependent or Gab1-independent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534114 | PMC |
http://dx.doi.org/10.1186/1741-7007-2-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!