For a model system of polyethylene of chain lengths 40 and 100 carbon atoms, we calculated the pressure at different densities and compared them with the experimental values. The simulation was conducted on the second nearest neighbor diamond lattice, and the pressure was calculated using the virtual-volume-variation method after the system was reverse mapped to its fully atomistic form in continuous space and energy minimized. In addition, the pressure was also calculated from the virial route by conducting a short molecular dynamics simulation starting from the energy minimized structure. We show that the pressure obtained from our simulations is quite reasonable in the length of simulation time (in Monte Carlo steps) normally employed in our group. These results provide additional evidence for the equilibration of our model systems, and methodology to calculate the pressure in our lattice models.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1812750DOI Listing

Publication Analysis

Top Keywords

virtual-volume-variation method
8
monte carlo
8
second nearest
8
nearest neighbor
8
neighbor diamond
8
diamond lattice
8
pressure calculated
8
energy minimized
8
pressure
5
calculation pressure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!