Radiative and nonradiative decay rates of a molecule close to a metal particle of complex shape.

J Chem Phys

Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy.

Published: November 2004

We present a model to evaluate the radiative and nonradiative lifetimes of electronic excited states of a molecule close to a metal particle of complex shape and, possibly, in the presence of a solvent. The molecule is treated quantum mechanically at Hartree-Fock (HF) or density-functional theory (DFT) level. The metal/solvent is considered as a continuous body, characterized by its frequency dependent local dielectric constant. For simple metal shapes (planar infinite surface and spherical particle) a version of the polarizable continuum model based on the integral equation formalism has been used, while an alternative methodology has been implemented to treat metal particles of arbitrary shape. In both cases, equations have been numerically solved using a boundary element method. Excitation energies and nonradiative decay rates due to the energy transfer from the molecule to the metal are evaluated exploiting the linear response theory (TDHF or TDDFT where TD--time dependent). The radiative decay rate of the whole system (molecule + metal/solvent) is calculated, still using a continuum model, in terms of the response of the surrounding to the molecular transition. The model presented has been applied to the study of the radiative and nonradiative lifetimes of a lissamine molecule in solution (water) and close to gold spherical nanoparticles of different radius. In addition, the influence of the metal shape has been analyzed by performing calculations on a system composed by a coumarin-type molecule close to silver aggregates of complex shape.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1806819DOI Listing

Publication Analysis

Top Keywords

radiative nonradiative
12
molecule close
12
complex shape
12
nonradiative decay
8
decay rates
8
close metal
8
metal particle
8
particle complex
8
nonradiative lifetimes
8
continuum model
8

Similar Publications

Extending Exciton Diffusion Length via an Organic-Metal Platinum Complex Additive for High-Performance Thick-Film Organic Solar Cells.

Adv Mater

January 2025

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.

The long exciton diffusion length (L) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited L hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system.

View Article and Find Full Text PDF

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF

Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment.

View Article and Find Full Text PDF

Plasma-Enhanced Grain Growth and Non-Radiative Recombination Mitigation in CsSnBr Perovskite Films for High-Performance, Lead-Free Photodetectors.

Small

January 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.

Tin-based halide perovskites represent a highly promising and eco-friendly alternative to lead-based materials with significant potential for optoelectronic applications. However, their advancement is hampered by challenges such as poor film crystallinity and unintended self-doping. Herein, this work reports the fabrication of high-quality CsSnBr perovskite films by plasma-assisted chemical vapor deposition (PACVD), which improves the film quality.

View Article and Find Full Text PDF

Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs.

Nat Commun

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!