Solid-phase synthesis of arginine-containing peptides and fluorogenic substrates using a side-chain anchoring approach.

J Org Chem

Laboratoire des Aminoacides Peptides et Protéines, CNRS UMR 5810, Universités Montpellier I et II, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier cédex 5, France.

Published: November 2004

Attachment of an amino acid to a solid support by its side chain is sometimes necessary to take advantage of an alpha-carboxylic group available for diverse modifications, including the incorporation of a fluorophore for the preparation of fluorogenic substrates. In contrast to most other amino acids, anchoring the guanidinium group of an arginine to a resin requires the use of a supplementary linker. To avoid the usually multistep synthesis of such a linker as well as its difficult attachment to the guanidine group, we developed a simple method where the guanidine group is built on a Rink amide resin. Our strategy followed the steps of guanidine formation: (i) addition of an isothiocyanate derivative of ornithine to the amino group of a solid support, yielding Nomega-linked thiocitrulline; (ii) S-methylation of thiourea; (iii) guanidinylation using ammonium acetate. Cleavage of the resin generated the arginine-containing compound, the amine group of the resin becoming part of the guanidine. We have demonstrated the usefulness of this method by the synthesis of a series of fluorogenic substrates for trypsin-like serine proteases, which were obtained in high yield and purity. Then, our strategy also allowed generation from the same precursor differentially substituted arginine derivatives, including Nomega-methyl- and Nomega-ethylarginines. The ability to prepare such analogues together with the intermediates thiocitrulline and S-methylisothiocitrulline from a unique precursor while the alpha-amine and carboxylic groups remain available for modification also makes this method a powerful tool for combinatorial solid-phase synthesis of NO synthase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo048792tDOI Listing

Publication Analysis

Top Keywords

fluorogenic substrates
12
solid-phase synthesis
8
solid support
8
guanidine group
8
group
6
synthesis arginine-containing
4
arginine-containing peptides
4
peptides fluorogenic
4
substrates side-chain
4
side-chain anchoring
4

Similar Publications

Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.

View Article and Find Full Text PDF

In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.

View Article and Find Full Text PDF

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Amphiphilic hemicyanine molecular probes crossing the blood-brain barrier for intracranial optical imaging of glioblastoma.

Sci Adv

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.

View Article and Find Full Text PDF

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs‒Eu complex.

Mikrochim Acta

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!