Capsaicin-sensitive sensory nerves that contain calcitonin gene-related peptide (CGRP) contribute significantly to cardioprotective mechanisms. In this study, the possible role of capsaicin-sensitive afferent nerves in the development of congestive heart failure was examined in an established model of adriamycin-induced experimental cardiomyopathy in rats. Systemic treatment with capsaicin was utilized to deplete sensory neuropeptides from cardiac afferent nerves. Echocardiography was applied to assess the cardiac function in adriamycin-treated rats pretreated with capsaicin or its vehicle. In control rats, adriamycin treatment produced a reduction in the fractional shortening of the left ventricle and an increase in the ratio of the left atrial diameter and the aortic diameter, indicative of a decreased myocardial contractility and heart failure only at 3-4 weeks post-treatment. In contrast, in capsaicin-pretreated rats, a deterioration of the cardiac function was already evident 1 week after the cessation of adriamycin administration, while the clinical signs associated with cardiomyopathy were more severe and displayed a significantly more rapid progression. Immunohistochemistry revealed a complete depletion of calcitonin gene-related peptide from cardiac sensory nerves after systemic capsaicin treatment. This study has demonstrated that elimination of capsaicin-sensitive afferent nerves promotes the development and progression of adriamycin-induced myocardial dysfunction. The results suggest that interfering with capsaicin/vanilloid receptor function and/or perturbation of the myocardial CGRP metabolism may open up new perspectives concerning prevention and/or alleviation of the pathological changes that follow adriamycin treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-004-0985-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!