Long interspersed elements (LINEs) and short interspersed elements (SINEs) are retrotransposons. These elements can mobilize by the "copy-and-paste" mechanism, in which their own RNA is reverse-transcribed into complementary DNA (cDNA). LINEs and SINEs not only are components of eukaryotic genomes but also drivers of genomic evolution. Thus, studies of the amplification mechanism of LINEs and SINEs are important for understanding eukaryotic genome evolution. Here we report the characterization of one LINE family (UnaL2) and two SINE families (UnaSINE1 and UnaSINE2) from the eel (Anguilla japonica) genome. UnaL2 is approximately 3.6 kilobases (kb) and encodes only one open reading frame (ORF). UnaL2 belongs to the stringent type--thought to be a major group of LINEs--and can mobilize in HeLa cells. We also show that UnaL2 and the two UnaSINEs have similar 3' tails, and that both UnaSINE1 and UnaSINE2 can be mobilized by UnaL2 in HeLa cells. These elements are thus useful for delineating the amplification mechanism of stringent type LINEs as well as that of SINEs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/msi054 | DOI Listing |
Mob DNA
January 2025
Department of Biology, La Sierra University, Riverside, CA, USA.
Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.
View Article and Find Full Text PDFJ Appl Genet
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
In our previous study, we identified a Short Interspersed Nuclear Element Retrotransposon Insertion Polymorphism (SINE-RIP) within the 3' untranslated region (3'UTR) of the Phospholipase A2 Group XVI (PLA2G16) gene, which is essential in lipid metabolism. In this study, we confirmed the presence of this 280 bp SINE insertion and examined its distribution across ten distinct pig breeds using PCR and sequencing. Subsequently, RT-PCR was employed to determine its potential for co-transcription.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
X-ray crystallography is a fundamental technique that provides atomic-level insights into RNA structures. However, obtaining crystals of RNA structures diffracting to high resolution is challenging. We introduce a simple strategy to enhance the resolution limit of RNA crystals by the selective substitution of Watson-Crick pairs by GU pairs within RNA sequences.
View Article and Find Full Text PDFBioinform Biol Insights
December 2024
Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan.
Transposable elements (TEs) or transposons are thought to play roles in animal physiological processes, such as germline, early embryonic, and brain development, as well as aging. However, their roles have not been systematically investigated through experimental studies. In this study, we created a catalog of genes directly involved in replication, excision, or integration of transposon-coding DNA, which we refer to as transposon DNA processing genes (TDPGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!