The progressive depletion of skeletal muscle is a hallmark of many types of advanced cancer and frequently is associated with debility, morbidity, and mortality. Muscle wasting is primarily mediated by the activation of the ubiquitin-proteasome system, which is responsible for degrading the bulk of intracellular proteins. E3 ubiquitin ligases control polyubiquitination, a rate-limiting step in the ubiquitin-proteasome system, but their direct involvement in muscle protein catabolism in cancer remains obscure. Here, we report the full-length cloning of E3alpha-II, a novel "N-end rule" ubiquitin ligase, and its functional involvement in cancer cachexia. E3alpha-II is highly enriched in skeletal muscle, and its expression is regulated by proinflammatory cytokines. In two different animal models of cancer cachexia, E3alpha-II was significantly induced at the onset and during the progression of muscle wasting. The E3alpha-II activation in skeletal muscle was accompanied by a sharp increase in protein ubiquitination, which could be blocked by arginine methylester, an E3alpha-selective inhibitor. Treatment of myotubes with tumor necrosis factor alpha or interleukin 6 elicited marked increases in E3alpha-II but not E3alpha-I expression and ubiquitin conjugation activity in parallel. E3alpha-II transfection markedly accelerated ubiquitin conjugation to endogenous cellular proteins in muscle cultures. These findings show that E3alpha-II plays an important role in muscle protein catabolism during cancer cachexia and suggest that E3alpha-II is a potential therapeutic target for muscle wasting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-2102 | DOI Listing |
Clin Nutr
December 2024
Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; Department of Nutrition, University of California Davis, Davis, CA, USA; Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nutritional Sciences and Dietetics, Harokopio University of Athens, Greece. Electronic address:
Background & Aims: Brown adipose tissue (BAT) has been mainly investigated as a potential target against cardiometabolic disease, but it has also been linked to cancer-related outcomes. Although preclinical data support that BAT and the thermogenic adipocytes in white adipose tissue may play an adverse role in the pathogenesis of cancer cachexia, results from studies in patients have reported inconsistent results. The purpose of this study was to examine the interrelationship between presence of detectable BAT, changes in body weight, and cachexia in patients with cancer.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital Yogyakarta, Indonesia.
Background: Cancer cachexia in breast cancer (BC) patients is not commonly reported, particularly in Indonesia. This study assessed the prevalence of cachexia in local patients with BC receiving chemotherapy, and the associated factors.
Methods: This cross-sectional study included 160 BC patients who started chemotherapy between July 2018 and June 2022.
Front Pharmacol
January 2025
Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
Objective: To elucidate the metabolic mechanisms by which acteoside (ACT) isolated from alleviates cancer-related fatigue (CRF) in a murine model of colon cancer with cachexia.
Methods: BALB/c mice inoculated with C26 colon cancer cells were treated with paclitaxel (PTX, 10 mg/kg) and ACT (100 mg/kg) alone or in combination for 21 days. Fatigue-associated behaviors, tumor inhibition rate, and skeletal muscle morphology assessed by hematoxylin-eosin (H&E) staining and electron microscopy were evaluated.
Am J Physiol Cell Physiol
January 2025
Departments of Surgery and Oncology, University of Calgary Arnie Charbonneau Cancer Institute, University of Calgary.
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.
Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.
Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!