Memory-like alterations in Aplysia axons after nerve injury or localized depolarization.

J Neurosci

Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas 77030, USA.

Published: November 2004

AI Article Synopsis

  • The study investigates the phenomenon of long-term hyperexcitability (LTH) in axons following injury or depolarization, suggesting that this change could have memory-like properties similar to synaptic mechanisms.
  • Localized axonal LTH was observed in certain neurons of Aplysia and lasted for 24 hours after nerve injury or increased extracellular potassium levels, highlighting the resilience of these changes.
  • The study indicates that both the induction and expression of LTH are dependent on local protein synthesis, which is consistent with mechanisms involved in memory formation, proposing that axons could be key to understanding fundamental plasticity.

Article Abstract

Adaptive, long-term alterations of excitability have been reported in dendrites and presynaptic terminals but not along axons. Persistent enhancement of axonal excitability has been described in proximal nerve stumps at sites of nerve section in mammals, but this hyperexcitability is considered a pathological derangement important only as a cause of neuropathic pain. Identified neurons in Aplysia were used to test the hypothesis that either axonal injury or the focal depolarization that accompanies axonal injury can trigger a local decrease in action potential threshold [long-term hyperexcitability (LTH)] having memory-like properties. Nociceptive tail sensory neurons and a giant secretomotor neuron, R2, exhibited localized axonal LTH lasting 24 hr after a crush of the nerve or connective that severed the tested axons. Axons of tail sensory neurons and tail motor neurons, but not R2, displayed similar localized LTH after peripheral depolarization produced by 2 min exposure to elevated extracellular [K(+)]. Neither the induction nor expression of either form of LTH was blocked by saline containing 1% normal [Ca(2+)] during treatment or testing. However, both were prevented by local application of the protein synthesis inhibitors anisomycin or rapamycin. The features of (1) long-lasting alteration by localized depolarization, (2) restriction of alterations to intensely depolarized regions, and (3) dependence of the alterations on local, rapamycin-sensitive protein synthesis are shared with synaptic mechanisms considered important for memory formation. This commonality suggests that relatively simple, accessible axons may offer an opportunity to define fundamental plasticity mechanisms that were important in the evolution of memory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730315PMC
http://dx.doi.org/10.1523/JNEUROSCI.2329-04.2004DOI Listing

Publication Analysis

Top Keywords

localized depolarization
8
axonal injury
8
tail sensory
8
sensory neurons
8
protein synthesis
8
axons
5
memory-like alterations
4
alterations aplysia
4
aplysia axons
4
nerve
4

Similar Publications

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Compelling evidence has demonstrated that rehabilitation through physical exercise, a non-invasive and non-surgical intervention, enhances muscle reinnervation and motor recovery after peripheral nerve injury (PNI) by increasing muscle-derived brain-derived neurotrophic factor (BDNF) expression and triggering TrkB-dependent axonal plasticity. Adenosine has been widely acknowledged to trigger TrkB via A2A receptor (A2AR). Since motor nerve terminals co-express TrkBs and A2ARs and depolarizing conditions increase muscle release of BDNF and adenosine, we examined whether A2ARs activation could recapitulate the functional recovery benefits of intermittent exercise after a nerve crush.

View Article and Find Full Text PDF

Background: HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 limits its potential therapeutic application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!