Photoparoxysmal response (PPR) is an abnormal visual sensitivity of the brain in reaction to intermittent photic stimulation. It is an epilepsy-related electroencephalographic trait with high prevalence in idiopathic epilepsies, especially in common idiopathic generalized epilepsies (IGEs), such as childhood absence epilepsy and juvenile myoclonic epilepsy. This degree of co-morbidity suggests that PPR may be involved in the predisposition to IGE. The identification of genes for PPR would, therefore, aid the dissection of the genetic basis of IGE. Sixteen PPR-multiplex families were collected to conduct a genome-wide linkage scan using broad (all PPR types) and narrow (exclusion of PPR types I and II and the occipital epilepsy cases) models of affectedness for PPR. We found an empirical genome-wide significance for parametric (HLOD) and non-parametric (NPL) linkage (Pgw(HLOD)=0.004 and Pgw(NPL)=0.01) for two respective chromosomal regions, 7q32 at D7S1804 (HLOD=3.47 with alpha=1, P(NPL)=3.39x10(-5)) and 16p13 at D16S3395 (HLOD=2.44 with alpha=1, P(NPL)=7.91x10(-5)). These two genomic regions contain genes that are important for the neuromodulation of cortical dynamics and may represent good targets for candidate-gene studies. Our study identified two susceptibility loci for PPR, which may be related to the underlying myoclonic epilepsy phenotype present in the families studied.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddi018DOI Listing

Publication Analysis

Top Keywords

genome-wide linkage
8
linkage scan
8
myoclonic epilepsy
8
ppr types
8
ppr
7
scan epilepsy-related
4
epilepsy-related photoparoxysmal
4
photoparoxysmal electroencephalographic
4
electroencephalographic response
4
response evidence
4

Similar Publications

: Pelvic organ prolapse (POP) has become a common health problem among the aging population and affects an increasing number of elderly women worldwide. Studies within family and twin pairs provided strong evidence for the contribution of genetic factors to POP. Given the incomplete penetrance, polygenic traits, and small effect sizes of each variant in complex diseases, it is not always easy to evaluate the genetic susceptibility and molecular mechanisms involved in POP.

View Article and Find Full Text PDF

Understanding the genetic characteristics of indigenous goat breeds is vital for their conservation and breeding. Haimen goats, native to China's Yangtze River Delta, possess distinctive traits such as white hair, moderate growth rate, high-quality meat, and small body size. However, knowledge regarding the genetic structure and germplasm characteristics of Haimen goats remains limited.

View Article and Find Full Text PDF

Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.

View Article and Find Full Text PDF

Background: Cholelithiasis is influenced by various factors, including genetic elements identified in genome-wide association studies (GWAS), but their biological functions are not fully understood.

Methods: Analyzing data from the Finngen database with 37,041 cholelithiasis cases and 330,903 controls, this study combined SNP data from GTEx v8 and linkage disequilibrium data from the 1000 Genomes Project. Using the TWAS FUSION protocol and SMR analysis, it investigated the relationship between gene expression and cholelithiasis, employing colocalization tests and conditional analyses to explore causality.

View Article and Find Full Text PDF

White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!