Helicobacter pylori infection of the stomach elicits a vigorous but ineffective host immune and inflammatory response, resulting in persistence of the bacterium for the life of the host. We have reported that in macrophages, H. pylori up-regulates inducible NO synthase (iNOS) and antimicrobial NO production, but in parallel there is induction of arginase II, generating ornithine, and of ornithine decarboxylase (ODC), generating polyamines. Spermine, in particular, has been shown to restrain immune response in activated macrophages by inhibiting proinflammatory gene expression. We hypothesized that spermine could prevent the antimicrobial effects of NO by inhibiting iNOS in macrophages activated by H. pylori. Spermine did not affect the up-regulation of iNOS mRNA levels but in a concentration-dependent manner significantly attenuated iNOS protein levels and NO production. Reduction in iNOS protein was due to inhibition of iNOS translation and not due to iNOS degradation. ODC knockdown with small interfering (si) RNA resulted in increased H. pylori-stimulated iNOS protein expression and NO production without altering iNOS mRNA levels. When macrophages were cocultured with H. pylori, killing of bacteria was enhanced by transfection of ODC siRNA and prevented by addition of spermine. These results identify a mechanism of immune dysregulation induced by H. pylori in which stimulated spermine synthesis by the arginase-ODC pathway inhibits iNOS translation and NO production, leading to persistence of the bacterium and risk for peptic ulcer disease and gastric cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C400498200DOI Listing

Publication Analysis

Top Keywords

inos protein
12
inos
10
immune response
8
helicobacter pylori
8
persistence bacterium
8
inos mrna
8
mrna levels
8
inos translation
8
spermine
6
pylori
6

Similar Publications

Contrast-induced acute kidney injury is a common complication marked by reduced kidney function within 48  hours of contrast administration. The aim of this study was to evaluate renal function, anatomy, and molecular changes at 24  hours, 48  hours, and 72  hours post-iodinated contrast media (ICM) administration. This true-experimental study used a post-test-only control group design.

View Article and Find Full Text PDF

This study investigated the anti-inflammatory effects of water-dispersible hesperetin (WD-Hpt) in an endotoxin-induced uveitis (EIU) rat model. The rats were orally administered 10, 25, or 50 mg/kg WD-Hpt immediately after lipopolysaccharide (LPS) injection at the concentration of 200 μg. Clinical scores, cellular inflammation, the aqueous humor (ApH) protein concentration, as well as the levels of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in AqH, and histopathological grades were assessed.

View Article and Find Full Text PDF

The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.

View Article and Find Full Text PDF

Mycoplasma pneumoniae MPN606 induces inflammation by activating MAPK and NF-κB signaling pathways.

Microb Pathog

January 2025

Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China. Electronic address:

Mycoplasma pneumoniae (M. pneumoniae) is one of the major pathogens causing community-acquired pneumonia (CAP), and its pathogenic mechanism is not fully understood. Inflammatory response is the most basic and common pathological phenomenon of CAP, but the specific mechanism needs further investigation.

View Article and Find Full Text PDF

Chronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks () have recently drawn huge interest from researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!