The production of elastase by Bacillus sp. EL31410 at various temperatures was investigated. In order to study the effect of temperature on elastase fermentation, different cultivation temperatures, ranging from 39 degrees C to 28 degrees C, were evaluated in shake flask. The result indicated that 37 degrees C was best for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 degrees C. This result was verified by batch fermentation in 5-L bioreactor under 37 degrees C and 30 degrees C temperature, respectively. The specific cell growth rate at 37 degrees C was higher than that at 30 degrees C during earlier stage of cultivation. The maximum value [5.5 U/(h x g DCW)] of elastase formation rate occurred at 24 h at 30 degrees C compared to 4.6 U/(h x g DCW) at 30 h at 37 degrees C. Based on these results, two-stage temperature shift strategy and oscillatory temperature cultivation mode were evaluated in the next study. When compared to single temperature of 37 degrees C or 30 degrees C, both two-stage temperature shift strategy and oscillatory temperature strategy improved biomass but did not yield the same result as expected for elastase production. The maximum biomass (both 8.6 g/L) was achieved at 30 h at 37 degrees C, but at 42 h using two-stage temperature cultivation strategy. The highest elastase production (652 U/ml) was observed at 30 degrees C in batch process. It was concluded that cultivation at constant temperature of 30 degrees C was appropriate for elastase production by Bacillus sp. EL31410.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1631/jzus.2004.1583 | DOI Listing |
As an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
Bovine besnoitiosis is a re-emerging cattle disease caused by the apicomplexan parasite , which severely affects individual animal welfare and profitability in cattle industry. We recently showed that tachyzoite exposure to bovine polymorphonuclear neutrophils (PMN) effectively triggers neutrophil extracellular trap (NET) formation, leading to parasite immobilization hampering host cell infection. So far, the triggers of this defense mechanism remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan. Electronic address:
For anti-aging and whitening treatment, ascorbic acid-2-glucoside (AA2G) was incorporated into a 4.0 % (w/v) ulvan solution at three concentrations (0.5 %, 1.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
The lungs of people with cystic fibrosis (PwCF) are characterized by recurrent bacterial infections and inflammation. Infections in cystic fibrosis (CF) are left unresolved despite excessive neutrophil infiltration. The role of CFTR in neutrophils is not fully understood.
View Article and Find Full Text PDFHepatology
December 2024
Department of Pediatrics, University of Colorado Anschutz, Aurora, CO.
Background Aims: Biliary atresia (BA) entails an inflammatory sclerosing lesion of the biliary tree, with prominent fibrosis in infancy. Previous studies revealed neutrophil-activating IL-8 and neutrophil extracellular traps (NETs) positively correlated with bilirubin and risk of liver transplant. The aims of this study were to determine the mechanism of NET formation (NETosis) in BA and if NETs induce stellate cell activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!