Differential effects of Viscum album extract IscadorQu on cell cycle progression and apoptosis in cancer cells.

Int J Oncol

Department of Molecular Cell Biology, Research Institute for Growth and Development (GROW), University of Maastricht, The Netherlands.

Published: December 2004

Extracts from European mistletoe or Viscum album L. have been reported to exert cytotoxic and immunomodulatory effects in vitro and in vivo. The mechanism of this anti-tumoral activity is however, largely unknown. In this study we tested the hypothesis that IscadorQu, an aqueous fermented extract from the European mistletoe grown on oaks, induces tumor regression by cell cycle inhibition and/or interference with apoptotic signaling pathways in cancer cells. Also a possible effect on angiogenesis, which is a prerequisite for tumor growth in vivo, is studied in endothelial cell cultures. Furthermore, we examined which apoptotic signaling route is activated by staining cells for specific pro-apoptotic proteins. To characterize these properties, 6 different human cancer cell lines, one epidermis derived cell line and 2 endothelial cell cultures were incubated with different concentrations of IscadorQu. Cell cycle kinetics parameters were measured by bromodeoxyuridine (BrdU) pulse labeling and tubulin staining. Apoptotic responses were detected by M30 CytoDeath or Annexin V/propidium iodide assays. Characterization of the apoptotic pathway was performed by staining cells for active caspase 3, active caspase 8, cytochrome C and chloromethyl-X-rosamine. The results of this study show that sensitivity to IscadorQu treatment varies strongly between different cell lines. In sensitive cell lines, including tumor and endothelial cell cultures, IscadorQu caused early cell cycle inhibition followed by apoptosis in a dose-dependent manner. Apoptosis was induced by activating the mitochondrial but not the death receptor-dependent pathway.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell cycle
16
endothelial cell
12
cell cultures
12
cell lines
12
cell
11
viscum album
8
iscadorqu cell
8
cancer cells
8
european mistletoe
8
cycle inhibition
8

Similar Publications

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.

View Article and Find Full Text PDF

Background: Nucleolar protein 7 (NOL7), a specific protein found in the nucleolus, is crucial for maintaining cell division and proliferation. While the involvement of NOL7 in influencing the unfavorable prognosis of metastatic melanoma has been reported, its significance in predicting the prognosis of patients with Hepatocellular Carcinoma (HCC) remains unclear.

Methods: Aberrant expression of NOL7 in HCC and its prognostic value were evaluated using multiple databases, including TCGA, GTEx, Xiantao Academic, HCCDB, UALCAN, TISCH, and STRING.

View Article and Find Full Text PDF

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

In Situ Conversion of Atherosclerotic Plaques' Iron into Nanotheranostics.

J Am Chem Soc

January 2025

Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.

The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!