Aspergillus fumigatus (AF) is a ubiquitous mold and is the most common cause of invasive aspergillosis, an important source of morbidity and mortality in immunocompromised hosts. Using cytokine flow cytometry, we assessed the magnitude of functional CD4+ and CD8+ T-cell responses following stimulation with Aspergillus antigens. Relative to those seen with cytomegalovirus (CMV) or superantigen stimulation, responses to Aspergillus antigens were near background levels. Subsequently, we confirmed that gliotoxin, the most abundant mycotoxin produced by AF, was able to suppress functional T-cell responses following CMV or staphylococcal enterotoxin B (SEB) stimulation. Additional studies demonstrated that crude AF filtrates and purified gliotoxin inhibited antigen-presenting cell function and induced the preferential death of monocytes, leading to a marked decrease in the monocyte-lymphocyte ratio. Analysis of caspase-3 activation confirmed that gliotoxin preferentially induced apoptosis of monocytes; similar effects were observed in CD83+ monocyte-derived dendritic cells. Importantly, the physiologic effects of gliotoxin in vitro were observed below concentrations recently observed in the serum of patients with invasive aspergillosis. These studies suggest that the production of gliotoxin by AF may constitute an important immunoevasive mechanism that is mediated by direct effects on antigen-presenting cells and both direct and indirect effects on T cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2004-09-3421 | DOI Listing |
J Appl Lab Med
January 2025
ARUP Laboratories, Salt Lake City, UT, United States.
Background: Detection of serum-specific immunoglobulin G (sIgG) to Aspergillus fumigatus traditionally relied on precipitin assays, which lack standardization and have poor analytical sensitivity. Automated quantitative immunoassays are now more widely used alternatives. A challenge, however, is determining reference interval (RI) cutoffs indicative of disease presence.
View Article and Find Full Text PDFMicrobial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
January 2025
Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of China.
Background: Both sensitization and mucus plugs are associated with poor clinical outcomes in COPD. However, little is known about the association between hypersensitivity and mucus plugging in patients with COPD.
Methods: We retrospectively enrolled COPD patients who had visited Peking University Third Hospital and received measurement of the specific IgE ( sIgE) from Oct 1, 2018 to Sep 30, 2023.
Microlife
December 2024
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.
The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Radiology, Assam Medical College & Hospital, Dibrugarh, Assam, India.
Background: Chronic pulmonary aspergillosis (CPA) is a disease commonly caused by Aspergillus fumigatus and other Aspergillus species characterized by cavitary lung lesions. Tea garden population is an agrarian population of Assam, mostly associated with tea plantations. Assam is a major tea-producing state with 803 tea gardens producing approximately 50% of the total tea in India, of which 177 are present in the Dibrugarh district alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!