Because GnRH and its receptor (GnRHR) are pivotal regulators of the reproductive endocrine axis and mutations in GNRHR lead to hypogonadotropic hypogonadism, we investigated whether genetic variation in GNRHR or GNRH1 affects pubertal timing in the general population. To screen for missense mutations in these genes that might affect pubertal timing, we resequenced the coding regions of these genes in 48 probands with late but otherwise normal pubertal development. No missense variants were found in either gene, except for a previously identified single nucleotide polymorphism (SNP) in GNRH1 that was not associated with late pubertal development. To search for common variants that might affect pubertal timing, we took a haplotype-based association approach. To identify common haplotypes in these genes, we genotyped 41 SNPs in DNA from commercially available European-derived multigenerational pedigrees and participants in a multiethnic cohort (MEC). Two blocks of strong linkage disequilibrium were identified that spanned GNRHR and one was identified spanning GNRH1; within each block, more than 80% of chromosomes carried one of a few common haplotypes. A set of haplotype-tagging SNPs that mark these common haplotypes in all five ethnic groups within the MEC were defined and used to perform association studies among 125 trios (probands with late pubertal development and their parents) and 506 women from the MEC who had early (menarche < 11 yr of age, n = 216) or late (menarche > or = 15 yr of age, n = 290) pubertal development. Three SNPs in GNRHR showed modest association with late pubertal development in the trios; among the 506 women, a different SNP was associated with late menarche, and one rare haplotype was associated with early age of menarche. All of the observed associations were relatively modest and only nominally statistically significant; replication is needed to determine their validity. We conclude that genetic variation in GNRH1 and GNRHR is not likely to be a substantial modulator of pubertal timing in the general population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2004-0649 | DOI Listing |
Nat Commun
January 2025
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
Pubertal timing is highly variable and is associated with long-term health outcomes. Phenotypes associated with pubertal timing include age at menarche, age at voice break, age at first facial hair and growth spurt, and pubertal timing seems to have a shared genetic architecture between the sexes. However, puberty phenotypes have primarily been assessed separately, failing to account for shared genetics, which limits the reliability of the purported health implications.
View Article and Find Full Text PDFDev Psychol
January 2025
Department of Psychology, University of Alabama at Birmingham.
Early pubertal timing is associated with adverse health in adulthood. These effects may be mediated by DNA methylation changes associated with accelerated cellular aging and mortality risk, but few studies tested associations between pubertal timing and epigenetic markers in adulthood. Additionally, pubertal timing effects often vary by sex and are understudied in diverse youth.
View Article and Find Full Text PDFAnn Epidemiol
January 2025
Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Purpose: Whether breast density mediates associations between early life body size and pubertal timing with postmenopausal breast cancer is underexplored.
Methods: We studied 33,939 Danish women attending the Capital Mammography Screening Program at ages 50-69 years. Early life anthropometry and pubertal timing information came from the Copenhagen School Health Records Register.
Child Dev
January 2025
Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
Using data from the Human Connectome Project in Development (N = 1304; ages 5-21 years; 50% male; 59% White, 17% Hispanic, 13% Black, 9% Asian), multiple measures (self-report, salivary hormones) and research designs (longitudinal, cross-sectional) were used to characterize age-related changes and sex differences in pubertal development. Both sexes exhibit a sigmoid trajectory of pubertal development; females show earlier pubertal timing and increased tempo ~9-13 years, while males show greater tempo ~14-18 years. All hormones increased with age, with sex differences in testosterone and DHEA levels and in testosterone rates of change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!