Firefly luciferase is imported into peroxisomes in insects, mammals, plants, and yeast, which implies that the mechanism of protein translocation into peroxisomes has been conserved during eukaryotic evolution. The carboxyl-terminal tripeptide serine-lysine-leucine in luciferase acts as a peroxisomal import signal in mammalian cells. We have investigated whether this tripeptide is also involved in translocation of firefly luciferase into peroxisomes in yeast (Saccharomyces cerevisiae). We show by gene fusion experiments that the carboxyl-terminal 104 amino acids of luciferase can direct a heterologous protein to yeast peroxisomes. Luciferase mutant proteins were tested for their ability to be imported into yeast peroxisomes in vivo. We demonstrate that mutations in the carboxyl-terminal serine-lysine-leucine tripeptide abolish translocation of the protein into yeast peroxisomes. However, when a passenger protein was tagged at its carboxyl terminus with this tripeptide the fusion protein did not go to peroxisomes. These results indicate that, in yeast, the tripeptide is necessary but not sufficient for peroxisomal import.

Download full-text PDF

Source

Publication Analysis

Top Keywords

firefly luciferase
12
peroxisomal import
12
yeast peroxisomes
12
carboxyl-terminal tripeptide
8
tripeptide serine-lysine-leucine
8
sufficient peroxisomal
8
protein yeast
8
yeast
7
peroxisomes
7
luciferase
6

Similar Publications

Development of translationally active cell lysates from different filamentous fungi for application in cell-free protein synthesis.

Enzyme Microb Technol

January 2025

Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:

There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.

View Article and Find Full Text PDF

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

Introduction: Intestinal lymphoma may be latent in some dogs with chronic inflammatory enteropathy. Mesenchymal stromal cells (MSCs) have potential therapeutic applications for refractory chronic inflammatory enteropathy, but their impact on the development of potential intestinal lymphomas has not yet been evaluated. Therefore, this study was performed to investigate the effect of canine adipose-derived MSCs (cADSCs) on the growth of canine lymphoma cell lines to assess the safety of MSC-based therapy in terms of pro- and anti-tumorigenic effects.

View Article and Find Full Text PDF

Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs.

Vaccines (Basel)

December 2024

Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.

The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Selection and Engineering of Novel Brighter Bioluminescent Reporter Gene and Color- Tuning Luciferase for pH-Sensing in Mammalian Cells.

Biosensors (Basel)

January 2025

Laboratory of Biochemistry, Molecular Biology and Bioluminescent Systems Technology, Department of Physics, Chemistry and Mathematics, Federal University of Sao Carlos (UFSCAR), Rodovia João Leme dos Santos, km 110, Sorocaba 18052-780, SP, Brazil.

Firefly luciferases have been extensively used for bioanalytical applications, including their use as bioluminescent reporters, biosensors, and for bioimaging biological and pathological processes. Due to their intrinsic pH- sensitivity, in recent years we have demonstrated that firefly luciferases can also be harnessed as color- tuning sensors of intracellular pH. However, it is known that mammalian cells require temperatures higher than 36 °C, which red-shift the bioluminescence spectra of most firefly luciferases, decreasing their activities and the resolution of ratiometric pH analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!