Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent progress in the understanding of the nature of the extraordinary variety of protein translocation systems, mainly in Gram negative bacteria, is reviewed. This takes us from the insertion of proteins into the inner membrane via the sophisticated Sec apparatus, the lethal injection of Type III proteins into host cells and on to the beautiful machine that assembles the flagellum. Attempts are made to establish some order, some common principles that might explain the variety and the complexity of some systems. The fundamentals considered are the nature of different transport signals, the nature of translocons (a wide variety of inner membrane types, outer membrane translocons are more conserved), the process of docking to translocons, the role of chaperones and the folding of transported proteins, the energetics of translocation, and prospects for future advances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2004.02.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!