A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acid-degradable particles for protein-based vaccines: enhanced survival rate for tumor-challenged mice using ovalbumin model. | LitMetric

Acid-degradable particles for protein-based vaccines: enhanced survival rate for tumor-challenged mice using ovalbumin model.

Bioconjug Chem

Center for New Directions in Organic Synthesis and Departments of Chemistry and Molecular and Cellular Biology, University of California, Berkeley, California 94720-1460, USA.

Published: April 2005

Acid-degradable protein-loaded polymer particles show promise for antigen-based vaccines due to their ability to activate cytotoxic T lymphocytes (CTLs) in vitro. Protein loadings and cytotoxic T lymphocyte activation efficiencies have now been enhanced through novel delivery vehicle designs. In particular, the use of a more hydrophilic acid-degradable cross-linker leads to increased water dispersibility and increased protein loading efficiency for the particles. A 2.5-fold increase in protein encapsulation allows the delivery of more protein antigen to antigen presenting cells (APCs) leading to a 20-fold rise in antigen presentation levels. The mechanism by which APCs internalize these particles was explored using the phagocytosis inhibitor, cytochalasin B. In addition, preliminary in vivo experiments were conducted to investigate the ability of the protein-loaded particles to provide immunity against tumors in mice, and an enhanced survival rate over the use of protein alone was observed, indicating that this vaccine delivery strategy has great practical potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc049956fDOI Listing

Publication Analysis

Top Keywords

enhanced survival
8
survival rate
8
protein
5
acid-degradable particles
4
particles protein-based
4
protein-based vaccines
4
vaccines enhanced
4
rate tumor-challenged
4
tumor-challenged mice
4
mice ovalbumin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!