beta-Cyclodextrin dimers bearing an oxamido bis(2-benzoic) carboxyl linker (1) or its metal complexes (2 and 3) were newly synthesized, and their inclusion complexation behavior with a series of representative aliphatic oligopeptides, i.e., Leu-Gly, Gly-Leu, Gly-Pro, Glu-Glu, Gly-Gly, Gly-Gly-Gly, and Glu(Cys-Gly), was elucidated by means of UV/vis, circular dichroism, fluorescence, and 2D NMR spectroscopy in Tris-HCl buffer solution (pH 7.4) at 25 degrees C. The results obtained indicated that metallobridged bis(beta-cyclodextrin)s 2 or 3 could significantly enhance the original molecular binding abilities of parent bis(beta-cyclodextrin) 1 toward model substrates through the cooperative binding of two cyclodextrin moieties and the additional chelation effect supplied by the coordinated metal centers. It is interesting that hosts 2 and 3 displayed an entirely different fluorescence behavior upon complexation with guest oligopeptides. Among the guest peptides examined, 3 showed the highest complex formation constant of 68 200 M(-)(1) for Glu-Glu, up to 510-fold as compared with 1 (135 M(-)(1)), while 1 gave excellent molecular selectivity for Glu(Cys-Gly)/Glu-Glu pair, up to 51-fold. The molecular binding ability and selectivity were discussed from the viewpoints of the induced-fit and multiple recognition mechanism between host and guest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc049870m | DOI Listing |
Nat Commun
January 2025
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, Lausanne, Switzerland.
The plastic waste crisis is among humanity's most urgent challenges. However, widespread adoption of sustainable plastics is hindered by their often inadequate processing characteristics and performance. Here, we introduce a bio-inspired strategy for the modification of a representative high molar mass, biodegradable aliphatic polyester that helps overcome these limitations and remains effective at molar masses far greater than the entanglement molar mass.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
The association of 55 dipeptides extracted from aggregation-prone regions of selected proteins was studied by means of multiplexed replica-exchange molecular dynamics simulations with the coarse-grained UNRES model of polypeptide chains. Each simulation was carried out with 320 dipeptide molecules in a periodic box at 0.24 mol/dm concentration, in the 260-370 K temperature range.
View Article and Find Full Text PDFNature
October 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
J Pept Sci
May 2024
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.
This work describes the self-assembly behavior of heterochiral, aliphatic dipeptides, l-Leu-d-Xaa (Xaa = Ala, Val, Ile, Leu), in green solvents such as acetonitrile (MeCN) and buffered water at neutral pH. Interestingly, water plays a structuring role because at 1% v/v, it enables dipeptide self-assembly in MeCN to yield organogels, which then undergo transition towards crystals. Other organic solvents and oils were tested for gelation, and metastable gels were formed in tetrahydrofuran, although at high peptide concentration (80 mM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!