Reactivation of Epstein-Barr virus from latency.

Rev Med Virol

Ludwig Institute for Cancer Research and Department of Virology, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.

Published: June 2005

AI Article Synopsis

  • The main challenge in cancer treatment is to find agents that selectively target cancer cells while sparing normal cells.
  • About 15% of human cancers are linked to virus infections, like the Epstein-Barr virus (EBV), which is present in the cancer cells but not in most normal cells.
  • A potential strategy for treatment involves reactivating the latent EBV in cancer cells to halt their growth and make them more recognizable to the immune system, and this review explores how EBV reactivation works and potential treatment methods.

Article Abstract

The general problem in cancer treatment centres on finding agents that specifically affect cancer cells without damaging normal cells. The differences between cancer cells and normal cells are usually very subtle but about 15% of all human cancers involve a virus infection, for example the Epstein-Barr virus associated cancers. In these cancers, every tumour cell carries the virus in a latent infection but the number of normal cells infected is very low. So a treatment that could somehow cause the elimination of EBV infected cells would be very specific for the cancer in such cases. One potential approach could involve finding ways to reactivate the latent virus in cancer cells into the early part of the lytic cycle, impeding cell proliferation, targeting chemotherapeutic agents to the cancer and causing the cancer cells to become targets for immune surveillance. This review considers the mechanisms by which EBV reactivation is controlled and discusses possible therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rmv.456DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
normal cells
12
epstein-barr virus
8
cells
8
cancer
7
virus
5
reactivation epstein-barr
4
virus latency
4
latency general
4
general problem
4

Similar Publications

Background: The common drugs used for the treatment of Newly Diagnosed Multiple Myeloma (NDMM) include bortezomib and lenalidomide, but the adverse effects of lenalidomide cannot be ignored, especially when it is used in the initial therapy.

Methods: This retrospective study evaluated the efficacy and safety of a modified DVD regimen (pegylated liposomal doxorubicin, bortezomib, and dexamethasone) followed by lenalidomide in the treatment of NDMM. A total of 40 NDMM patients were treated with a reduced dose of pegylated liposomal doxorubicin (20 mg/m) on day 1, subcutaneous bortezomib (1.

View Article and Find Full Text PDF

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!