Large regions of temperate forest are subject to elevated atmospheric nitrogen (N) deposition which can affect soil organic matter dynamics by altering mass loss rates, soil respiration, and dissolved organic matter production. At present there is no general model that links these responses to changes in the organization and operation of microbial decomposer communities. Toward that end, we studied the response of litter and soil microbial communities to high levels of N amendment (30 and 80 kg ha(-1) yr(-1)) in three types of northern temperate forest: sugar maple/basswood (SMBW), sugar maple/red oak (SMRO), and white oak/black oak (WOBO). We measured the activity of extracellular enzymes (EEA) involved directly in the oxidation of lignin and humus (phenol oxidase, peroxidase), and indirectly, through the production of hydrogen peroxide (glucose oxidase, glyoxal oxidase). Community composition was analyzed by extracting and quantifying phospholipid fatty acids (PLFA) from soils. Litter EEA responses at SMBW sites diverged from those at oak-bearing sites (SMRO, BOWO), but the changes were not statistically significant. For soil, EEA responses were consistent across forests types: phenol oxidase and peroxidase activities declined as a function of N dose (33-73% and 5-41%, respectively, depending on forest type); glucose oxidase and glyoxal oxidase activities increased (200-400% and 150-300%, respectively, depending on forest type). Principal component analysis (PCA) ordinated forest types and treatment responses along two axes; factor 1 (44% of variance) was associated with phenol oxidase and peroxidase activities, factor 2 (31%) with glucose oxidase. Microbial biomass did not respond to N treatment, but nine of the 23 PLFA that formed >1 mol% of total biomass showed statistically significant treatment responses. PCA ordinated forest types and treatment responses along three axes (36%, 26%, 12% of variance). EEA factors 1 and 2 correlated negatively with PLFA factor 1 ( r = -0.20 and -0.35, respectively, n = 108) and positively with PLFA factor 3 ( r = +0.36 and +0.20, respectively, n = 108). In general, EEA responses were more strongly tied to changes in bacterial PLFA than to changes in fungal PLFA. Collectively, our data suggests that N inhibition of oxidative activity involves more than the repression of ligninase expression by white-rot basidiomycetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-003-9001-xDOI Listing

Publication Analysis

Top Keywords

temperate forest
12
phenol oxidase
12
oxidase peroxidase
12
glucose oxidase
12
eea responses
12
treatment responses
12
organic matter
8
oxidase
8
oxidase glyoxal
8
glyoxal oxidase
8

Similar Publications

Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.

View Article and Find Full Text PDF

This study focused on determining the content of bioactive compounds in selected fruits of wild shrubs. The plants selected for the study were from the Rosaceae and Adoxaceae families. Particular attention should be paid to the fruits of plants commonly growing in Poland (temperate climate), such as , , and .

View Article and Find Full Text PDF

No winter halt in below-ground wood growth of four angiosperm deciduous tree species.

Nat Ecol Evol

January 2025

PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.

In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.

View Article and Find Full Text PDF

Bryophyte literature records database of Aysén, Chilean sub-Antarctic ecoregion.

Sci Data

January 2025

Departamento de Biodiversidad, Ecología y Evolución. Universidad Complutense de Madrid, Madrid, Spain.

The Chilean sub-Antarctic ecoregion hosts the largest expanse of temperate forests, wetlands and peatlands, as well as the largest proportion of protected areas in the southern hemisphere. Bryophytes are highly diverse and ecologically essential in sub-Antarctic ecosystems and are considered as biodiversity loss indicators caused by the current socio-ecological crisis. However, knowledge about their biodiversity is rather limited.

View Article and Find Full Text PDF

Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!