Hailey-Hailey disease (HHD) is an autosomal dominant trait characterized by erythematous and oozing skin lesions preponderantly involving the body folds. In the present unusual case, however, unilateral segmental areas along the lines of Blaschko showing a rather severe involvement were superimposed on the ordinary symmetrical phenotype. Based on this observation and similar forms of mosaicism as reported in other autosomal dominant skin disorders, we postulated that in such cases, 2 different types of segmental involvement can be distinguished. Accordingly, the linear lesions as noted in the present case would exemplify type 2 segmental HHD. In the heterozygous embryo, loss of heterozygosity occurring at an early developmental stage would have given rise to pronounced linear lesions reflecting homozygosity or hemizygosity for the mutation. By analyzing DNA and RNA derived from blood and skin samples as well as keratinocytes of the index patient with various molecular techniques including RT-PCR, real-time PCR, and microsatellite analysis, we found a consistent loss of the paternal wild-type allele in more severely affected segmental skin regions, confirming this hypothesis for the first time, to our knowledge, at the molecular and cellular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525740PMC
http://dx.doi.org/10.1172/JCI21791DOI Listing

Publication Analysis

Top Keywords

type segmental
8
hailey-hailey disease
8
autosomal dominant
8
linear lesions
8
segmental
5
allelic loss
4
loss underlies
4
underlies type
4
segmental hailey-hailey
4
disease providing
4

Similar Publications

CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results.

View Article and Find Full Text PDF

Scoliosis in adult Type 1 Chiari malformation with syringomyelia patients: from pathogenesis to treatment.

Am J Transl Res

December 2024

Department of Orthopaedics, Beilun District People's Hospital, Beilun Branch of The First Affiliated Hospital, Zhejiang University Ningbo, Zhejiang, China.

The pathogenesis of type I Chiari malformation (CIM) is complex and remains unclear. The theory of posterior cranial fossa incompatibility has gained widespread acceptance in recent years. In the patients with CIM combined with syringomyelia, scoliosis is a common occurrence, with severe cases often leading to complications that necessitate surgical intervention.

View Article and Find Full Text PDF

The Pathogenesis and Management of Vitiligo.

Cureus

December 2024

Physiology, Taibah University, Al-Madinah al-Munawarah, SAU.

Vitiligo is a common autoimmune disease that progressively destroys melanocytes in the skin, resulting in the appearance of patchy depigmentation. The aim of this review is to increase awareness towards vitiligo by providing insight on the pathogenesis and management options. Vitiligo is an acquired pigmentary skin disease, which can appear with one or a few macules.

View Article and Find Full Text PDF

Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.

View Article and Find Full Text PDF

Introduction: Greater white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) are seen with transactive response DNA-binding protein 43 (TDP-43) pathology in frontotemporal lobar degeneration (FTLD-TDP). WMH associations with TDP-43 pathology in Alzheimer's disease (AD-TDP) remain unclear.

Methods: A total of 157 participants from Mayo Clinic Rochester with autopsy-confirmed AD, known TDP-43 status, and antemortem fluid-attenuated inversion recovery (FLAIR) MRI were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!