The present work aimed 1) to evaluate whether an increase in galanin or galanin receptors could be induced in the nucleus basalis magnocellularis (nbm) by degeneration of the basalocortical neurons from the cortex and 2) to analyze the consequences of such an increase on cortical activity. First, a mild ischemic insult to the frontoparietal cortex was performed to induce the degeneration of the basalocortical system; galanin immunoreactivity, galanin binding sites, and cholinergic muscarinic receptors were quantified through immunocytochemistry and autoradiography. Second, galanin infusions in the nbm were undertaken to mimic a local increase of the galaninergic innervation; cortical acetylcholine release, cerebral glucose use, and cerebral blood flow were then measured as indices of cortical activity. As a result of the cortical ischemic lesion, the postsynaptic M1 and presynaptic M2 muscarinic receptors were found to be reduced in the altered cortex. In contrast, galaninergic binding capacity and fiber density were found to be increased in the ipsilateral nbm in parallel with a local decrease in the cholinergic markers such as the muscarinic M1 receptor density. Galanin infusion into the nbm inhibited the cortical acetylcholine release and cerebral blood flow increases elicited by the activation of the cholinergic basalocortical system but failed to affect acetylcholine release, cerebral blood flow, and cerebral glucose use when injected alone in the nbm. These results demonstrate that degeneration of the basalocortical system from the cortex induces an increase in galaninergic markers in the nbm, a result that might suggest that the galaninergic overexpression described in the basal forebrain of patients with Alzheimer's disease can result from a degeneration of the cholinergic basalocortical system from the cortex. Because galanin was found to reduce the activity of the basalocortical cholinergic system only when this one is activated, galanin might exert its role rather during activation deficits than under resting conditions such as the resting cortical hypometabolism, which is characteristic of Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.WCB.0000139447.69413.05 | DOI Listing |
Front Cell Neurosci
December 2014
Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA.
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices.
View Article and Find Full Text PDFHippocampus
September 2008
Laboratoire d'Imagerie et de Neurosciences Cognitives, UMR7191 CNRS, Equipe de Neurobiologie Cognitive et Comportementale, ULP, IFR 37 de Neurosciences, GDR 2905 CNRS, 12 rue Goethe, 67000 STRASBOURG, France.
The selective lesion of basal forebrain cholinergic neurons (BFCNs) is an unestimable tool to study the implication of these neurons in cognition, an interest widely motivated by their degeneration in Alzheimer's disease. Here we evaluated the histochemical and behavioral effects of a selective lesion of BFCNs in C57BL/6J mice treated intracerebroventricularly (ICV) with a novel version of the immunotoxin mu p75-saporin (0.4 mug/mouse).
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
November 2004
Université de Caen, UMR 6185 CNRS, Centre Cyceron, France.
The present work aimed 1) to evaluate whether an increase in galanin or galanin receptors could be induced in the nucleus basalis magnocellularis (nbm) by degeneration of the basalocortical neurons from the cortex and 2) to analyze the consequences of such an increase on cortical activity. First, a mild ischemic insult to the frontoparietal cortex was performed to induce the degeneration of the basalocortical system; galanin immunoreactivity, galanin binding sites, and cholinergic muscarinic receptors were quantified through immunocytochemistry and autoradiography. Second, galanin infusions in the nbm were undertaken to mimic a local increase of the galaninergic innervation; cortical acetylcholine release, cerebral glucose use, and cerebral blood flow were then measured as indices of cortical activity.
View Article and Find Full Text PDFExp Neurol
December 2004
INSERM U289, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, Paris, France.
We have previously reported that the alpha2-adrenoceptor antagonist dexefaroxan protects against the degeneration of nucleus basalis magnocellularis (NbM) cholinergic neurons following cortical devascularization in the adult rat. Since nerve growth factor (NGF) is critical to the survival of NbM cholinergic neurons in the adult brain and its synthesis is known to be regulated by noradrenergic mechanisms, we examined whether the protective effect of dexefaroxan in the devascularization model was associated with regional induction of NGF biosynthesis. Dexefaroxan or vehicle was administered to rats via subcutaneous minipumps for 28 days following devascularization or sham operation procedures.
View Article and Find Full Text PDFNeuroscience
February 2003
INSERM U289, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, F-75013 Paris, France.
It has been hypothesized [Colpaert, F.C., 1994.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!